期刊文献+

基于断裂力学的圆钢管混凝土T型焊接节点疲劳寿命预测 被引量:22

PREDICTION OF FATIGUE LIFE FOR WELDED T-JOINTS OF CONCRETE-FILLED CIRCULAR HOLLOW SECTIONS BASED ON FRACTURE MECHANICS
原文传递
导出
摘要 该文应用线弹性断裂力学基本原理预测圆钢管混凝土桁架焊接T型节点的疲劳寿命。首先,进行了一些节点的疲劳试验,作为验证节点疲劳寿命预测是否可靠的参考数据;其次,建立了基于断裂力学的疲劳寿命数值模拟的模型和流程框图,采用ANSYS软件编制了APDL宏命令,实现了节点疲劳寿命的计算;最后,分析了节点疲劳裂纹的扩展特性。研究结果表明:断裂力学数值模型能较好地预测这种复杂的钢混组合节点的疲劳寿命;在正常的焊接质量条件下,不同的初始裂纹尺度对节点疲劳扩展寿命的影响不大;裂纹在长度方向的扩展速度大于在深度方向的扩展速度;裂纹深度在达到1/2主管壁厚之前,裂纹沿深度方向的扩展非常缓慢,大部分的疲劳寿命消耗在此阶段,之后裂纹沿深度方向的扩展较快。 The basic theory of linear elastic fracture mechanics was used to predict the fatigue life of welded T-joints in concrete-filled steel circular hollow section trusses.Firstly,some fatigue tests of the joints was carried out,which would be reference data for the validation of fatigue life prediction.Secondly,a model and a flowchart were set up for the numerical simulation of fatigue life based on fracture mechanics.APDL macro commands were developed by means of the software ANSYS,and then the prediction of fatigue life of the joints was implemented.Finally,the behavior of fatigue crack propagation was investigated.It is concluded that the numerical model based on fracture mechanics can better predict the fatigue life of complicated steel-concrete composite joints.The different size of an initial crack does not cause a significant influence in the condition of normal welding quality.The rate of crack propagation in length is faster than that in depth.Before the depth of a crack come to a half of the chord thickness,the crack propagates quite slowly in depth and a large proportion of fatigue life undergoes this period.Hereafter,it propagates more quickly in the direction of depth.
出处 《工程力学》 EI CSCD 北大核心 2013年第4期331-336,354,共7页 Engineering Mechanics
基金 国家自然科学基金项目(50478108)
关键词 圆钢管混凝土 T焊接节点 断裂力学模型 疲劳寿命预测 裂纹扩展特性 concrete-filled steel circular hollow sections welded T-joints fracture mechanics model prediction of fatigue life behavior of crack propagation
  • 相关文献

参考文献9

  • 1Zhao X L,Herion S,Packer J A,et al.Design guide forcircular and rectangular hollow section welded jointsunder fatigue loading[M].German:CIDECT andTUV-Verlag,2001:19-30.
  • 2顾敏,童乐为,Zhao Xiao-ling,王笑峰.圆钢管混凝土T型焊接节点应力强度因子计算方法研究[J].工程力学,2011,28(5):178-185. 被引量:5
  • 3Health and safety executive.Background to new fatigueguidance for steel joints and connections in offshorestructures O/S technical report[M].England:Health andSafety Executive,1995.
  • 4Paris P C,Edorgan F.Critical analysis of crackpropagation laws[J].ASME Journal of BasicEngineering,1963,85:528-534.
  • 5Newman J C,Raju I S.An empirical stress intensityfactor equation for the surface crack[J].EngineeringFracture Mechanic,1981,15(1):185-192.
  • 6Dover W D,Hibberd R D.The influence of mean stressand amplitude distribution on random load fatigue crackgrowth[J].Engineering Fracture Mechanic,1977,15:251-263.
  • 7Schumacher A,Nussbaumer A,Haldimann-Sturm S,Walbridge S.Fatigue of bridge joints using welded tubesor cast steel node solutions[C].Montreal:7thInternational Conference on Short and Medium SpanBridges,2006.
  • 8Borges L,Nussbaumer A.Advanced numerical modelingof fatigue size effects in welded CHS K-joints[C].China:12th International Symposium on Tubular Structures,2008.
  • 9Nussbaumer A,Haldimann-Sturm S C.Fatigue of bridgejoints using welded tubes or cast steel node solutions[C].London:Tubular Structures XI,2004.

二级参考文献8

  • 1Tong L W, Wang K. Experimental study on stress concentration factors of concrete-filled circular hollow section T-joints under axial loading [C]. Proceedings of 8th pacific structural conference. Wairakei, New Zealand, 2007.
  • 2CIDECT, Monograph No.7, Fatigue behaviour of welded hollow section joints [S]. UK., 1982.
  • 3Haswell J, Hopkins P. A review of fracture mechanics models of tubular joints [J]. Fatigue and Fracture of Engineering Materials and Structure, 1991, 14(5): 483- 497.
  • 4Lee M M K, Bowness D. Estimation of stress intensity factor solutions for weld toe cracks in offshore tubular joints [J]. International Journal of Fatigue, 2002, 24(8): 861 -875.
  • 5Cao J J, Yang G J. Crack modeling in FE analysis of circular tubular joints [J]. Engineering Fracture Mechanics, 1998, 61(5-6): 537-553.
  • 6Lie S T, Lee C K. Model and mesh generation of cracked tubular Y-joints [J]. Engineering Fracture Mechanics, 2003, 70(2): 161 - 184.
  • 7Barsoum R S. Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements [J]. International Journal for Numerical Methods in Engineering, 1977, 11: 85-98.
  • 8Newman J C, Raju I S. An empirical stress intensity factor equation for the surface crack [J]. Engineering Fracture Mechanics, 1981, 15: 185-192.

共引文献4

同被引文献142

引证文献22

二级引证文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部