期刊文献+

一种针对造影图像中血管狭窄的自动识别技术 被引量:4

An Automatic Inspection Technology for Angiostenosis in Contrastographic Image
原文传递
导出
摘要 本文旨在提出一种针对血管造影图像的计算机自动计算方法,能够让程序计算出血管的轮廓、分段、宽度等参数,随后智能识别出血管的狭窄段。该方法属于计算机自动光学检测(AOI)技术的一种,它根据血管在造影图像中按曲线分布且有固定方向的特点,使用改进的Steger算法进行自动检测,首先将图像与高斯函数核进行卷积运算,然后在每个像素处进行二次泰勒展开,计算每个像素的Hessian矩阵特征值和特征向量,来获得该点的线条方向和二阶导数极大值。再用双阈值算法和方向连通算子生成血管曲线,最后对曲线上每个亚像素特征点计算该点的血管宽度。在对有心脏血管局部狭窄的数字式X线图像进行实验后发现,该方法能够获得我们所需的血管信息,识别出其中狭窄部分。实践证明该方法对于提取造影图像中的血管具有较好的效果,它具有速度快、精度高、鲁棒性好、不需要人工介入的优点,是一种极具应用前景的计算机辅助诊断手段。 This paper presents an automatic calculation method for angiography image, which enables programs to in- tellectively acquire several parameters of blood vessels, such as contours, segments, widths, etc. and then intellec- tively identify the angiostenosis parts. This method is a vessels usually distribute as curves and have a fastening kind of automatic optic inspection (AOI) technology. Blood direction. According to this feature, the approach performs inspection automatically using improved Steger algorithm, which firstly computes the convolution between image and Gaussian function kernel, and then computes second order Taylor expansion at each pixel. And further the eigenval- ues and eigenveetors of Hessian matrix are calculated on each pixel to obtain the direction of lines and local maximum of second derivative at that point. Hysteresis threshold and directional connection operators are then used to generate blood vessel skeleton. Finally we can compute the blood vessel widths for every sub-pixel object points on blood ves- sel curve. For given digital X-ray images of hearts with blood vessel local straitness, experiments showed that this method had the ability of getting all the data we need and could find the local confined parts in blood.vessels. This approach is proved to have a good effort for angiography images, and it has some advantages such as fast speed, high accuracy, good robustness and no need for human interventions. It could also be a promising computer aided diagno- sis method.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2013年第2期380-386,394,共8页 Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(50875074) 国家863计划项目资助(2009AA04Z114)
关键词 血管狭窄 Steger算法 自动光学检测 Angiostenosis Steger algorithm Automatic optic inspection (AOI)
  • 相关文献

参考文献14

  • 1SZNITMAN R, ROTHER D, HANDAJ, et al. Adaptive multi-spectral illumination for retinal microsurgery [ J]. Med ImageComput Comput Assist Interv, 2010. 13(Pt 3) t 465-472.
  • 2NEHAB D,RUSINKIEWIEZ S,DAVIS J. Improved sub-pixel stereo correspondences through symmetric refinement[C]//10th IEEE International Conference on Computer Vi-sion. Beijing: 20051 557-563.
  • 3WANG Y, LIATSIS P. A fully automated framework forsegmentation and stenosis quantification of coronary arteriesin 3D CTA imaging[C]// Second International Conference onDevelopments in Systems Engineering,Abu Dhabi,2009:136-140.
  • 4YANG R Q, CHENG S, YANG W, et al. Robust and accu-rate surface measurement using structured light [J]. IEEETrans Instrum Meas, 2008, 57(6) : 1275-1280.
  • 5STEGER C, Extraction of curved lines from images [C]//Proceeding of the 13th International Conference on PatternRecognition, Vienna; 1996,2: 251-255.
  • 6STEGER C. An unbiased detector of curvilinear structures[J]. IEEE Trans Pattern Anal Mach Intell,1998,20(2):113-125.
  • 7FARNEBACK G, WESTIN C F. Improving Deriche-style re-cursive Gaussian .ilters[J3. J Math Imaging Vis, 2006, 26(3): 293-299.
  • 8JIN J S, GAO Y. Recursive implementation of log filtering[J]. Real-Time Imaging, 1997,3(1): 59-65.
  • 9VAN VLIET L J, YOUNG I T, VERBEEK P W. RecursiveGaussian derivative filters [C]//Proceedings of the 14th In-ternational Conference on Pattern Recognition. Brisbane:1998: 509-514.
  • 10CANNY J. A computational approach to edge detection[J].IEEE Trans Pattern Anal Mach IntelU 1986,8(6) : 679-698.

共引文献6

同被引文献32

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部