摘要
通过引入伸展变量和非常规的渐近序列{ε2j},运用合成展开法,对一类具非线性边界条件的非线性高阶微分方程的奇摄动问题构造了形式渐近解,再运用微分不等式理论证明了原问题解的存在性及所得渐近近似式的一致有效性.
The formal asymptotic solutions are constructed for a class of singular perturbed problems for higher order equations with nonlinear boundary value conditions by the introduction of the stretched variable and the unconventional asymptotic sequence and the method of composite expansions. Then the existence of solutions for the original problems and the uniform validity of the asymptotic approximations are proved by the theory of differential inequality.
出处
《纯粹数学与应用数学》
CSCD
2013年第2期197-207,共11页
Pure and Applied Mathematics
基金
国家自然科学基金(10901003)
安徽高校省级自然科学基金(KJ2011A135)
关键词
奇摄动
非线性边界条件
高阶微分方程
微分不等式理论
singular perturbation, nonlinear boundary value condition, higher order differential equation,the theory of differential inequality