期刊文献+

奥氏体化与冷却速率对过共析钢组织的影响 被引量:15

EFFECTS OF AUSTENITIZATION AND COOLING RATES ON THE MICROSTRUCTURE IN A HYPER-EUTECTOID STEEL
原文传递
导出
摘要 通过使用热膨胀仪模拟奥氏体化与连续冷却过程,研究了一种过共析钢在连续冷却条件下奥氏体化与冷却速率对于先共析渗碳体及珠光体片间距的影响规律.结果表明:提高连续冷却速率、延长奥氏体化时间或者提高奥氏体化温度均可以降低相变温度,扩大相变温度区间,细化珠光体片间距,使先共析渗碳体厚度变薄或变得不连续.然而,过度地提高冷却速率或者奥氏体化温度会导致出现马氏体,破坏组织的均匀性;通过控制合适的奥氏体化温度和冷却速率,大幅度延长奥氏体化时间得到了细化的全珠光体组织,并从C原子扩散和形核生长的角度对实验现象进行了理论解释. Cold-drawn pearlitic steel wires have the highest strength of all steel products. It is a promising way to enhance the mechanical properties by increasing the carbon content. However, the proeutectoid cementite forms easily due to the hypereutectoid composition and deteriorates the mechanical and processing properties of steel wires. It is important for hypereutectoid steel wire drawing to achieve a fine and fully pearlitic microstructure without proeutectoid cementite. The austenitization and following continuous cooling process were simulated in the dilatometer for a hypereutectoid steel. The microstructure was observed with OM and SEM. The transformation temperature, prior-austenite grain size, pearlitic interlamellar spacing and proeutectoid cementite thickness were determined by dilatometric curves or OM/SEM images. The austenite grain size increases rapidly with a higher temperature and almost keeps invariant with a longer austenitization time. Faster cooling rate, higher austenitization temperature or longer austenitization time decrease the starting and finishing temperature of phase transformation, widen the temperature range, refine the pearlitic interlamellar spacing and suppress the proeutectoid cementite precipitation (reduce the thickness or make it discontinuous). However, it is easy to form martensite which is bad for the homogeneity of pearlitic microstructure by increasing the cooling rate or austenitization temperature simply. A fine pearlite in a pseudoeutectoid microstructure is achieved by extending the austenitization time to 60 min and controlling the austenitization temperature and cooling rate. Discontinuous proeutectoid cementite is observed in the samples with the higher austenitization temperature. Higher austenitization temperature and longer time are helpful to weaken the carbon concentration gradient. The homogeneous carbon distribution restrains carbon diffusion for cementite nucleation during the proeutectoid cementite precipitation and pearlite transformation, which decreases the transformation temperature. Compare to pearlite transformation, the proeutectoid cementite precipitation is affected more strongly by the carbon diffusion due to a longer diffusion distance. Therefore, the precipitation amount of proeutectoid cementite is reduced if the carbon diffusion is restrained. The amount of grain corner and grain edge reduce more dramatically than that of grain boundary if austenite grain size increases. The proeutectoid cementite only nucleates in grain corner and grain edge. The pearlite nucleation can form in grain boundary. Therefore, the larger austenite grains result in the sharp reduction in the sites for nucleation of proeutectoid cementite. Then, the amount of proeutectoid cementite are reduced and the morphology becomes discontinuous.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2013年第5期583-592,共10页 Acta Metallurgica Sinica
关键词 过共析钢 奥氏体化 冷却速率 先共析渗碳体 片间距 相变温度 扩散 hypereutectoid steel austenitization cooling rate proeutectoid cementite interlamellar spacing transformation temperature diffusion
  • 相关文献

参考文献2

二级参考文献33

  • 1朱晓东,李承基,章守华,邹明,苏世怀.Si对过共析锰钢力学性能及晶界组织的影响[J].金属学报,1996,32(11):1130-1138. 被引量:6
  • 2Elwazri A M, Wanjara P, Yue S. Mater Sci Eng, 2005; A404:91.
  • 3Gladman T. The Physical Metallurgy of Microalloyed Steels. London: Institute of Materials Press, 1997:337.
  • 4Hiroyasu Y, Shinji M, Mineyasu T. NKK Technol Rev, 2002; 86:1.
  • 5Wong J N, Chul M B, Sei J, Soon J K. Scr Mater, 2000; 42:457.
  • 6Chance J, Ridley N. Metall Trans, 1981; 12A: 1205.
  • 7Sharma R C, Purdy G R, Kirkaldy J S. Metall Trans, 1979; 10A: 1129.
  • 8Alsalman S A, Lorimer G W, Ridley N. Acta Metall, 1979; 27:1391.
  • 9Brown D, Ridley N. J Iron Steel Inst, 1969; 207:1232.
  • 10Hutchinson C R, Hackenberg R E, Shiflet G J. Acta Mater, 2004; 52:3565.

共引文献45

同被引文献78

引证文献15

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部