期刊文献+

基于自适应细菌觅食算法的灰度图像增强方法 被引量:1

Adaptive bacterial foraging optimization for grey image enhancement
在线阅读 下载PDF
导出
摘要 为提高图像增强的自适应性,首先将细菌的自适应趋向因子引入到细菌觅食算法中,然后将提升的细菌觅食算法和非完全Beta函数结合而去获得最佳的灰度变换参数,最终实现对降质图像的最大程度的自适应增强。仿真实验结果表明,提升的优化算法可以更好的优化Beta函数的参数,因而能更有效地提高图像整体对比度和视觉效果。 To improve the adaptive performance of image enhancement, firstly, a kind of adaptive chemotaxis factor of bacteria is employed to the bacterial foraging optimization. Then the improved adaptive bacterial foraging algorithm (ABFA) is combined with the incomplete Beta function to obtain the optimum grey translation parameters. Finally, the degraded image is enhanced adaptively to the utmost extent. The simulation results show that the improved optimization algorithm is more efficient to refine parameters of the Beta function than its counterpart, which enhances the global contrast of the image and visual effect.
出处 《河北工程大学学报(自然科学版)》 CAS 2013年第1期77-81,共5页 Journal of Hebei University of Engineering:Natural Science Edition
基金 河北省高等学校科学研究计划项目(项目编号:2011138)
关键词 细菌觅食算法 图像增强 优化算法 趋向因子 bacterial foraging algorithm image enhancement optimization algorithm chemotaxis factor
  • 相关文献

参考文献11

  • 1李丙春,耿国华.基于粒子群优化的图像自适应增强方法[J].计算机工程与设计,2007,28(20):4959-4961. 被引量:6
  • 2LEE JD. Digital image enhancement and noise filler byuse of local statistics [ J]. IEEE Trans I,AMI, 1997 ,19(9) : 863 -872.
  • 3CHENG H V, XU H. A novel fuzzy logic approach tocontrast enhancement [ J]. Pattern Recognition,2000,33(5) : 809-819.
  • 4TUBBS J D. A note on parametric image enhancement[J]. Pattern Recognition, 1997 , 617 -621.
  • 5张斌,蒋丽峰,蒋加伏.一种图像增强的自适应免疫遗传算法[J].计算技术与自动化,2005,24(3):54-56. 被引量:2
  • 6PASSINO K M. Biomimicry of bacterial foraging for dis-tributed optimization and control [ J]. IEEE Control Sys-tems Magazine, 2002 (22 ) ; 52 -67.
  • 7SWAGATAM DAS, ARUIT BISWAS, SAMBARTAa DAS-GUPTA. Bacterial foraging optimization algorithm: theoreti-cal foundations, analysis,and applications [J]. Founda-tions of Computational Intelligence, 2009(3) : 23 - 55.
  • 8DAITA T, MISRA I S. Improved adaptive bacteria fora-ging algorithm in optimization of antenna array for fasterconvergence [ J]. Progress in Electromagnetic ResearchC, 2008, 1(1) :143 -157.
  • 9周雅兰.细菌觅食优化算法的研究与应用[J].计算机工程与应用,2010,46(20):16-21. 被引量:74
  • 10孙勇强,须文波,孙俊.基于量子行为微粒群优化算法的图像增强方法[J].计算机应用,2008,28(1):202-204. 被引量:6

二级参考文献61

  • 1李宁,孙德宝,岑翼刚,邹彤.带变异算子的粒子群优化算法[J].计算机工程与应用,2004,40(17):12-14. 被引量:60
  • 2王国权,仲伟波.灰度图像增强算法的改进与实现研究[J].计算机应用研究,2004,21(12):175-176. 被引量:22
  • 3张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:139
  • 4Kim D H,Cho C H.Bacterial foraging based neural network fuzzy learning[C] //IICAI 2005,2005:2030-2036.
  • 5Acharya D P,Panda G,Mishra S,et al.Bacteria foraging based independent component analysis[C] /International Conference on Computational Intelligonce and Multimedia Applications.Los Alamitos:IEEE Press,2007:527-531.
  • 6Dasgupta S,Biswas A,Das S,et al.Automatic circle detection on images with an adaptive bacterial foraging algorithmiC] //2008 Genetic and Evolutionary Computation Conference(GECCO 2008),2008:1695-1696.
  • 7Chen H,Zhu Y,Hu K.Multi-colony bacteria foraging optimization with cell-to-cell communication for RFID network planning[J].Applied Soft Computing,2010,10:539-547.
  • 8Passino K M.Biomimicry of bacterial foraging for distributed optimization and control[J].IEEE Control Systems Magazine,2002,22:52-67.
  • 9Berg H.Motile behavior of bacteria[J].Phys Today,2000,53(1):24-29.
  • 10Berg H C,Brown D A.Chemotaxis in escherichia coli analyzed by three-dimensional tracking[J].Nature,1972,239:500-504.

共引文献85

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部