期刊文献+

R^N中一类拟线性椭圆方程组非负解的存在性和多重性 被引量:3

Existence and Multiplicity of Nonnegative Solutions for a Quasilinear System in R^N
在线阅读 下载PDF
导出
摘要 利用极小极大原理和Ljusternik-Schnirelmann畴数理论,研究了R^N中一类拟线性椭圆方程组.当2≤p,q<N时,α≥0,β≥0满足α+β+2>max{p,q}和(α+1)/p~*+(β+1)/q~*≤1,通过建立解的个数与正连续函数V和W达到极小值集合的拓扑量之间的关系,得到拟线性方程组至少存在cat_(M_δ)(M)个不同的非负解. In this paper,we consider a class of quasilinear elliptic equations in R^N by the minimax theorems and the Ljusternik-Schnirelmann theory.When 2≤p,qN,α≥0 andβ≥0 satisfy the conditions ofα+β+2max{p,q} and(a+1)/(p~*)+(β+1)/(q~*)≤1,the quasilinear system has at least cat_M_δ(M) nonnegative solutions by relating the number of solutions with the topology of the set where V and W attain its minimum.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2013年第1期174-184,共11页 Acta Mathematica Scientia
基金 国家自然科学基金(10771105) 山西省高校科技研究开发项目(20111129)资助
关键词 拟线性方程组 NEHARI流形 极小极大原理 Ljusternik-Schnirelmann畴数理论 Quasilinear system Nehari manifold Minimax theorems Ljusternik-Schnirelmanntheory.
  • 相关文献

参考文献18

  • 1Astrita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics. New York: McGraw-Hill, 1974.
  • 2Martinson L K, Pavlov K B. Unsteady shear flows of a conducting fluid with a rheological power law Magnitnaya Gidrodinamika, 1971, 2:50- 58.
  • 3Kalashnikov A S. On a Nonlinear Equation Appearing in the Theory of Non-stationary Filtration. Russian Trud Sere I G Petrovski. 1978.
  • 4Esteban J R, Vazquez J L. On the equation of turbulent filtration in one-dimensional porous media. Nonlinear Anal 1986, 10(11): 1303-1325.
  • 5Fang Y Q, Zhang J H. Multiplicity of solutions for elliptic system involving supercritical Sobolev exponent. Acta Appl Math, 2011, 115(3): 255-264.
  • 6付永强,张夏.R^N上一类p(x)-Laplacian方程的无穷多解问题[J].数学物理学报(A辑),2010,30(2):465-471. 被引量:2
  • 7Han P. Multiple positive solutions of nonhomogeneous elliptic systems involving critical Sobolev exponents. Nonlinear Anal, 2006, 64(4): 869 -886.
  • 8Ishiwata M. Multiple solutions for semilinear elliptic systems involving critical Sobolev exponent. Differ- ential Integral Equations, 2007, 20(11): 1237-1252.
  • 9Hsu T S. Multiple positive solutions for a critical quasilinear elliptic system with concave-convex nonlin- earities. Nonlinear Anal, 2009, 71(7/8): 2688-2698.
  • 10Willem M. Minmax Theorems. Boston: Birkhauser, 1996.

二级参考文献12

  • 1Alves C, Souto M. Existence of solutions for a class of problems in R^N involving p(x)-Laplacian. Prog Nonlinear Differential Equations Appl, 2005, 66:17-32.
  • 2Edmunds D, Lang J, Nekvinda A. On Lp(x) norms. Proc R Soc, A, 1999, 455:219-225.
  • 3Edmunds D, Rakosnfk J. Sobolev embedding with variable exponent. Studia Math, 2000, 143:267-293.
  • 4Fan X L, Jia C. Existence of infinitely many solutions for a Neumann problem involving the p(x)-Laplacian. J Math Anal Appl, 2007, 334:248-260.
  • 5Fan X L, Han X. Existence and multiplicity of solutions for p(x)-Laplacian equations in R^N. Nonlinear Anal, 2004, 59:173-188.
  • 6Fan X L, Zhao Y, Zhao D. Compact imbedding theorems with symmetry of Strauss-Lions type for the space W^1,p(x)(Ω). J Math Anal Appl, 2001, 255:333-348.
  • 7Fu Y. Existence of solutions for p(x)-Laplacian problem on an unbounded domain. Topol Methods Nonlinear Anal, 2007, 30:235-249.
  • 8Fu Y, Zhang X. A multiplicity result for p(x)-Laplacian problem in R^N. Nonlinear Anal, 2009, 70(6): 2261-2269.
  • 9Kovacik O, Rakosnik J. On spaces L^p(x) and W^k,p(x). Czechoslovak Math J, 1991, 41:592-618.
  • 10Ruzicka M. Electro-Rheological Fluids: Modeling and Mathematical Theory. Berlin: Springer-Verlag, 2000.

共引文献1

同被引文献41

  • 1Astrita G, Marrucci G. Principles of Non-Newtonian Fluid Mechanics. New York: McGraw-Hill, 1974.
  • 2Martinson L K, Pavlov K B. Unsteady shear flows of a conducting fluid with a rheological power law. Magnitnaya Gidrodinamika, 1971, 7(2): 50-58.
  • 3Figueiredo G M. Multiplicity of solutions for a class of elliptic systems in IN. Electronic Journal of Differential Equations, 2006, 76:1-12.
  • 4Alves C O. Local mountain pass for a class of elliptic system. J Math Anal Appl, 2007, 335(1): 135-150.
  • 5Furtado M F, da Silva J P P, Multiplicity of solutions for homogeneous elliptic systems with critical growth. J Math Anal Appl, 2012, 385(2): 770-785.
  • 6Ikoma N, Tanaka K. A local mountain pass type result for a system of nonlinear Schrodinger equations. Calc Var, 2011, 40(3/4): 449-480.
  • 7Fang Y Q, Zhang J H. Multiplicity of solutions for elliptic system involving supercritical sobolev exponent. Acta Appl Math, 2011, 115(3): 255 264.
  • 8Figueiredo G M, FFurtado M F. Multiple positive solutions for a quasilinear system of Schrodinger equa- tions. Nonlinear Differ Equ Appl, 2008, 15(3): 309-333.
  • 9Zhang H X, Liu W B. Existence of nontrivial solutions to perturbed p-Laplacian system in involving critical nonlinearity. Boundary Value Problems, 212, 2012:53.
  • 10Alves C O. Multiplicity of positive solutions for a mixed boundary elliptic system. Rocky Mountain J Math, 2008, 38(1): 19-39.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部