摘要
利用极小极大原理和Ljusternik-Schnirelmann畴数理论,研究了R^N中一类拟线性椭圆方程组.当2≤p,q<N时,α≥0,β≥0满足α+β+2>max{p,q}和(α+1)/p~*+(β+1)/q~*≤1,通过建立解的个数与正连续函数V和W达到极小值集合的拓扑量之间的关系,得到拟线性方程组至少存在cat_(M_δ)(M)个不同的非负解.
In this paper,we consider a class of quasilinear elliptic equations in R^N by the minimax theorems and the Ljusternik-Schnirelmann theory.When 2≤p,qN,α≥0 andβ≥0 satisfy the conditions ofα+β+2max{p,q} and(a+1)/(p~*)+(β+1)/(q~*)≤1,the quasilinear system has at least cat_M_δ(M) nonnegative solutions by relating the number of solutions with the topology of the set where V and W attain its minimum.
出处
《数学物理学报(A辑)》
CSCD
北大核心
2013年第1期174-184,共11页
Acta Mathematica Scientia
基金
国家自然科学基金(10771105)
山西省高校科技研究开发项目(20111129)资助