期刊文献+

基于PSO差分-共射负反馈放大电路参数的自适应优化 被引量:2

Adaptive Optimization of Parameters for Differential-Common Emitter Circuit Based on Particle Swarm Optimization Algorithm
在线阅读 下载PDF
导出
摘要 采用粒子群优化(PSO)算法,以互阻增益和共模抑制比乘积对输出电阻的比作为适应度函数,对差分-共射两级直接耦合负反馈放大电路中的电阻值进行自适应优化.优化结果表明,对互阻增益和输出电阻分别限制时,它们均趋于设定值的底限,使适应度函数最大,以符合算法要求,从而可根据工程对放大器指标的不同需求,改变适应度函数,找到最佳电路参数.经EWB软件仿真,反馈放大器互阻增益与优化理论计算的最大相对误差为0.515%. Particle swarm optimization algorithm,which uses the product of the transimpedance gain and common mode rejection ratio to divide the output resistance as the fitness function,was used to adaptively optimize the values of the resistance of two-level direct coupled negative feedback differential-common emitter circuit under the requirements of large transimpedance gain,high common-mode rejection ratio,low output resistance.The results indicate that the values of resistance always tend to set value limit to derive the maximal fitness function when the transimpedance gain and output resistance are respectively restricted,and the results were obtained under the requirements of the algorithm.Moreover,the optimal parameters can be found by changing fitness function under considering the different needs of the amplifier in engineering.With EWB software simulation,the relative error between transimpedance gain and theory for the calculation of feedback amplifier is 0.515%.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第3期505-509,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:51101067 61 203272) 安徽省自然科学基金(批准号:1308085MF82) 安徽省质量工程项目(批准号:2012zy038 2012gxk057)
关键词 粒子群优化 互阻增益 共模抑制比 输出电阻 仿真 particle swarm optimization transimpedance gain common mode rejection ratio output resistance simulation
  • 相关文献

参考文献6

  • 1KennedyJ ?. Eberhart R C. A New Optimizer Using Particle Swarm Theory[C]/ /Proc of the 6th International Symposium on Micro Machine and Human Science. Nagoya:[so n.], 1995 :39-43.
  • 2Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing Hierarchical Particle Swarm Optimizer with Time?Varying Acceleration Coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(8): 240-255.
  • 3Sari A, Espanet C, Hissel D. Particle Swarm Optimization Applied to the Co-design of a Fuel Cell Air Circuit[J].Journal of Power Sources, 2008, 179(1): 121-131.
  • 4Pedersen M E H, Chipperfield AJ. Simplifying Particle Swarm Optimization[J]. Applied Soft Computing, 2010, 10(2): 618-628.
  • 5Mousa A A, El-Shorbagy M A, Abd-El-Wahed W F. Local Search Based Hybrid Particle Swarm Optimization Algorithm for Multiobjective Optimization[J]. Swarm and Evolutionary Computation, 2012, 3: 1-14.
  • 6郭新辰,吴希,陈书坤,吴春国.基于RBFNN和PSO求解第二类Volterra积分方程的混合方法[J].吉林大学学报(理学版),2010,48(4):658-661. 被引量:3

二级参考文献13

  • 1刘顺安,胡庆玉.PSO-BP网络算法在汽车悬架优化中的应用[J].吉林大学学报(工学版),2009,39(3):571-575. 被引量:16
  • 2沈以淡.积分方程[M].2版.北京:北京理工大学出版社,2002.
  • 3Golbabai A,Seifollahi S.An Iterative Solution for the Second Kind Integral Equations Using Radial Basis Functions[J].Applied Mathematics and Computation,2006,181(2):903-907.
  • 4Farnoosh R,Ebrahimi M.Monte Carlo Method for Solving Fredholm Integral Equations of the Second Kind[J].Applied Mathematics and Computation,2008,195(1):309-315.
  • 5Mahmoudi Y.Wavelet Galerkin Method for Numerical Solution of Nonlinear Integral Equation[J].Applied Mathematics and Computation,2005,167(2):1119-1129.
  • 6Maleknejad K,Shahrezaee M.Using Runge-Kutta Method for Numerical Solution of the System of Volterra Integral Equation[J].Applied Mathematics and Computation,2004,149(2):399-410.
  • 7Maleknejad K,Aghazadeh N.Numerical Solution of Volterra Integral Equations of the Second Kind with Convolution Kernel by Using Taylor-Series Expansion Method[J].Applied Mathematics and Computation,2005,161(3):915-922.
  • 8Chen S,Cowan C F N,Grant P M.Orthogonal Least Squares Learning for Radial Basis Function Networks[J].IEEE Transaction,Neural Networks,1991,2(2):302-309.
  • 9Kennedy J,Eberhart R C.Particle Swarm Optimization[C] //Proceedings of IEEE Neural Networks.Piscataway:IEEEE Service Center,1995:1942-1948.
  • 10Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory[C] //Proceedings of the Sixth International Symposium on Micro Machine and Human Science.Piscataway:IEEE Service Center,1995:39-43.

共引文献2

同被引文献1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部