期刊文献+

基于分块方向梯度能量的图像修补算法 被引量:4

Image Inpainting Based on Patch-Oriented Gradient Energy
在线阅读 下载PDF
导出
摘要 为了对图像破损区域进行修补和前景去除,提出一种基于样本的图像修补算法.首先引入"分块的方向梯度能量"来评估像素块在某个方向上的整体颜色变化情况;然后利用最大方向梯度能量估算该像素块中存在的边缘的强度与方向.该算法包括像素块填充优先级计算、像素块匹配和更新未知区域边界、可信任度等全局参数的更新3个步骤.在计算像素块填充优先级时,考察像素块在待修补区域边界法向上的方向梯度能量,优先选取包含更强边缘信息的未知区域;而在像素块匹配过程中,除比较像素块对应的颜色值之外,还利用方向梯度能量对它们可能存在的边缘进行比较与匹配.实验结果表明,该算法能够使图像的结构信息正确地传播到待修补的未知区域中,填充后的图像具有较为平滑的边缘. This paper presents a new exemplar-based image inpainting algorithm for image inpainting and object removal. A concept, called patch oriented gradient energy, is introduced to estimate the color change of an image patch. By means of the maximum patch-oriented gradient energy among all the patches, the direction and strength of an edge in the patch can be estimated. Exemplar-based inpainting methods often contain three steps: the first is to compute the priority of each patch to be inpainted; the second is to match the patches; and the third is to update the global parameters such as unknown region's contour and the confidence values. Using the oriented gradient energy in the normal direction of the unknown region's contour, we firstly select the patches containing the strongest structure information (i. e. , edge information). In the matching step, we compare not only the color values of the corresponding pixels, but also the edge information in the patches by the patch-oriented gradient energy. The experiments show that our algorithm can propagate the structures and textures near boundaries of the areas to be inpainted to the unknown regions in a correct way to obtain results with visually smooth edges in the inpainted image.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第6期782-787,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 教育部博士点基金(20090002110006) 北京市自然科学基金(4102027)
关键词 图像修补 基于样本 梯度 填补顺序 inpainting exemplar-based gradient filling order
  • 相关文献

参考文献11

  • 1Bertalmio M. Sapiro G. Caselles V. et al . Image inpainting[CJ //Computer Graphics Proceeding. Annual Conference Series. ACM SIGGRAPH. New York: ACM Press. 2000: 417-424.
  • 2Bertalmio M. Bertozzi A L, Sapiro G. Na vier -Strokes , fluid dynamics. and image and video inpainting[CJ //Proceedings of the IEEE Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press. 2001. 1: 355-362.
  • 3Chan T F. ShenJ. Non-texture inpainting by curvature-driven diffusions[J].Journal of Visual Communication and Image Representation. 2011. 12(4): 436-449.
  • 4张红英,彭启琮,吴亚东.数字破损图像的非线性各向异性扩散修补算法[J].计算机辅助设计与图形学学报,2006,18(10):1541-1546. 被引量:21
  • 5Criminisi A. Perez P. Toyama K. Object removal by exemplar-based inpainting[CJ //Proceedings of IEEE Computer Vision. Los Alamitos: IEEE Computer Society Press. 2003. 2: 721-728.
  • 6XU Z B. SunJ. Image inpainting by patch propagation using patch sparsity[J]. IEEE Transactions on Image Processing. 2010. 19(5): 1153-1165.
  • 7SunJ. Lu Y.JiaJ Y. et al , Image completion with structure propagation[CJ / /Computer Graphics Proceeding. Annual Conference Series. ACM SIGGRAPH. New York: ACM Press. 2005: 861-868.
  • 8Florinabel DJ.Juliet S E. Sadasivam V. Combined frequency and spatial domain-based patch propagation for image completion[J]. Computers and Graphics. 2011. 35 ( 6 ): 1051-1062.
  • 9ShenJ B.Jin X G. Zhou C. et al . Gradient based image completion by solving the Poisson equation[J]. Computers and Graphics. 2007. 310): 119-126.
  • 10Kwok T H. Sheung H. Wang C C L. Fast query for exemplar-based image completion[J]. IEEE Transactions on Image Processing. 2010. 19(2): 3106-3115.

二级参考文献13

  • 1Bertalmio M,Sapiro G,Caselles V,et al.Image inpainting[C] //Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,New Orleans,2000,1:417-424
  • 2Chan T,Shen J.Mathematical models for local non-texture inpainting[J].SIAM Journal of Application Mathematics,2001,62(3):1019-1043
  • 3Ballester C,Bertalmio M,Caselles V,et al.Filling-in by joint interpolation of vector fields and grey levels[J].IEEE Transactions on Image Processing,2001,10(8):1200-1211
  • 4Chan T,Shen J.Non-texture inpainting by curvature-driven diffusions (CDD)[J].Journal of Visual Communication and Image Representation,2001,12(4):436-449
  • 5Masnou S,Morel J M.Level-lines based disocclusion[C] //Proceedings of the 5th IEEE International Conference on Image Processing,Chicago,1998,3:259-263
  • 6Masnou S.Disocclusion:a variational approach using level lines[J].IEEE Transactions on Image Processing,2002,11(2):68-76
  • 7Ballester C,Caselles V,Verdera J.A variational model for disocclusion[C] //Proceedings of IEEE International Conference on Image Processing,Barcelona,2003,3:677-680
  • 8Criminisi A,Perez P,Toyama K A.Region filling and object removal by exemplar-based image inpainting[J].IEEE Transactions on Image Processing,2004,13(9):1200-1212
  • 9Rudin L,Osher S,Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60(1/4):259-268
  • 10Young Eutiguio O.矢量分析与张量分析[M].黄祖良,陈强顺,译.上海:同济大学出版社,1989:133-150

共引文献20

同被引文献30

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部