期刊文献+

基于MapReduce的分布式期望最大化算法 被引量:4

Distributed EM Algorithm Based on MapReduce
在线阅读 下载PDF
导出
摘要 利用MapReduce编程模型的简化性和期望最大化算法(Expectation maximization,EM)的高精度、恒收敛性,提出了一种对数据集规模无限制的数据处理算法;并通过对高斯混合模型的参数估计进行算法性能的测试。结果表明,算法能改善传统EM算法在处理大规模数据集时效率低的缺点,具有较好的加速比及可扩展性。 An algorithm which is unlimited to the size of data is proposed. The algorithm makes full use of sim- plify of programming model-MapReduee and the high precision, constant convergence performance of expectation maximization algorithm. According to estimating the parameters of Gaussian mixture model, the algorithm perform- ance can be tested. Simulation results show that, it can abandon the shortcoming of low efficiency to deal with the large-scale data, and the algorithm can obtain better performance in terms of converge speed and scalability.
出处 《科学技术与工程》 北大核心 2013年第16期4603-4606,共4页 Science Technology and Engineering
基金 河南省科技攻关项目(122102310412,11210231058) 郑州市科技局项目(112PCXTD343,114PYFZX504)资助
关键词 EM算法 高斯混合模型 MAPREDUCE 分布式 EM algorithm Gaussian mixture model MapReduce distributed
  • 相关文献

参考文献8

二级参考文献144

  • 1周锋,李旭伟.一种改进的MapReduce并行编程模型[J].科协论坛(下半月),2009(2):65-66. 被引量:14
  • 2吴宝贵,丁振国.基于Map/Reduce的分布式搜索引擎研究[J].现代图书情报技术,2007(8):52-55. 被引量:9
  • 3Wang Z, Yang F, Daniel W C Ho, et al. A Stochastic dynamic modeling of short gene expression time series data [J]. IEEE TRANSACTIONS on NANOBioseienee, 2008, 7 (1): 44--55.
  • 4Hoon M J de, Imoto S, Kobaysshi K. Inferring gene regulatory networks from time-ordered gene expression data of bacillus subtilis using differential equations [C] //Proceedings of Pacific Symposium on Biocomputing, 2003: 17 --28.
  • 5Kellam P, Liu X, Martin N, et al. A framework for modeling virus gene expression data [J]. Intelligent Data Analysis, 2001, 6 (3): 267--279.
  • 6Dempster A P, Laird N M, Rudin D B. Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society, Series B (Methodological), 1977, 39 (1): 1--38.
  • 7Kalman R E, Buoy R S. New results in linear filtering and prediction theory [J]. Transactions of the ASME, Series D, Journal of Basic Engineering, 1961 (83) : 95--107.
  • 8Sage A P, Husa J B. Adaptive filtering with unknown prior statistics [C]//Proceedings of Joint Automatic Control Conference, Colorado, 1969: 760-769.
  • 9Lambert D. Zero-inflated Poission regression, with an application to defects in manufacturing. Technometrics, 1992 ;34 : 1-14.
  • 10Bohning D. Zero-inflated Poisson models and C. A. Man : a tutorial col- lection of evidence. Biometrical Journal, 1998 ;40:833-843.

共引文献156

同被引文献25

引证文献4

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部