期刊文献+

基于贝叶斯稀疏学习的多跳频信号频率跟踪方法 被引量:8

A Frequency Tracking Method for Multiple Frequency-hopping Signals Based on Sparse Bayesian Learning
在线阅读 下载PDF
导出
摘要 以往的跳频信号参数盲估计方法大多难以适应多个信号同时存在的情况,且需要积累一定数量的样本以后才能从中提取所需要的信息。为了稳定实时地跟踪跳频信号的频率,该文提出一种利用贝叶斯稀疏学习的单/多通道跳频信号频率估计和跳变时刻检测方法来实现多跳频信号频率的实时跟踪。首先建立了多跳频信号的稀疏表示模型,然后介绍了多观测贝叶斯稀疏学习算法及跳变时刻实时检测方法,最后仿真结果验证方法的有效性。 Most of previous blind parameter estimation methods of Frequency Hopping (FH) signals with a single channel do not adapt to overlapped signals. Moreover, the single- and multiple-channel-based methods use batch processing techniques almost, so they are not able to estimate FH signals in real time. To get real-time tracking reliably, a novel method for single- and multiple-channel-based frequency estimating and hop timing detecting for FH signals is proposed to track the frequency of multiple frequency-hopping signals based on Sparse Bayesian Learning (SBL). Firstly, overlapped FH signals sparse representation model is established. Then, the Sparse Bayesian Learning is used to estimate hopping frequencies and detect the frequency hops once they happen. Numerical examples are carried out to demonstrate the effectiveness of the proposed method.
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第6期1395-1399,共5页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61072120) 新世纪优秀人才支持计划资助课题
关键词 信号处理 跳频 频率估计 跳变时刻 贝叶斯稀疏学习 Signal processing Frequency Hopping (FH) Frequency estimation Hop timing Sparse Bayesian Learning (SBL)
  • 相关文献

参考文献1

二级参考文献17

  • 1D L Donoho,M Elad,V Temlyakov.Stable recovery of sparse overcomplete representations in the presence of noise[J].IEEE Trans on Information Theory,2006,52(1):6-18.
  • 2N Mourad,J P Reilly.Direction-of-arrival estimation using a mixed L2,0 norm approximation[J].IEEE Transactions on Signal Processing,2010,58(9):4646-4655.
  • 3M M Hyder,K Mahata.Coherent spectral analysis of asynchronously sampled signals[J].IEEE Signal Processing Letters,2011,18(2):126-129.
  • 4D L Donoho.Compressed sensing[J].IEEE Trans on Information Theory,2006,52(4):1289-1306.
  • 5S Chen,D L Donoho,M A Saunders.Atomic decomposition by basis pursuit[J].SIAM J Sci Comput,1999,20(1):33-61.
  • 6P Rodríguez,B Wohlberg.An iterative reweighted norm algorithm for total variation regularization[J].IEEE Signal Processing Letters,2007,14(12):948-951.
  • 7H Mohimani,M Zadeh,C Jutten.A fast approach for overcomplete sparse decomposition based on smothed L0 norm[J].IEEE Transactions on Signal Processing,2009,57(1):289-301.
  • 8M Hyder,K Mahata.An improved smoothed L0 approximation algorithm for sparse representation[J].IEEE Transactions on Signal Processing,2010,58(4):2194-2205.
  • 9J Tropp,A Gilbert.Signal recovery from random measurements via orthogonal matching pursuit[J].IEEE Trans Inf Theory,2007,53(12):4655-4666.
  • 10D Needell,R Vershynin.Signal recovery from incomeplete and inaccurate measurements via regularized orthogonal matching pursuit[J].IEEE J Sel Topics Signal Process,2010,4(2):310-316.

共引文献29

同被引文献61

  • 1Sha Zhi-chao, Huang Zhi-tao, Zhou Yi-yu, et al: Frequency- hopping signals sorting based on underdetermined blind source separation[J], lET Communications, 2013, 7(14): 1456-1464.
  • 2Fu Kuo-ching and Chen Yung-fang. Blind iterative maximum likelihood-based frequency and transition time estimation for frequency hopping systems[J]. IET Communications, 2013, 7(9): 883-892.
  • 3Yang Wen-ge, Li Meng, Wang Li-bin, et al: Parameter estimation of frequency hopping signals based on time frequency analysis[C]. Proceedings of the 26th Conference of Spacecraft TT&:C Technology, Beijing, China, 2013: 131-140.
  • 4Wong K T. Blind beamforming/geolocation for wideband- FFHs with unknown hop=sequences[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1): 65-76.
  • 5Liu X Q, Nicholas D S, and Swami A. Joint hop timing and frequency estimation for collision resolution in FH networks [J]. IEEE Transactions on Wireless Communications, 2005, 4(6): 3063-3074.
  • 6Lin C H and Fang W H. Joint angle and delay estimation in frequency hopping systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 1042-1056.
  • 7Zhang Y M, Mu W F, and Amin M G. Subspace analysis of spatial time-frequency distribution matrices[J]. IEEE Transactions on Signal Processing, 2001, 49(4): 747-759.
  • 8Zhang Y M, Obeidat B A, and Amin M G. Spatial polarimetric time-frequency distribution for direction-of- arrival estimation[J]. IEEE Transactions on Signal Processing, 2006, 54(4): 1327-1340.
  • 9Xia Tie-qi, Zheng Yi, Wan Qun, et al: Decoupled estimation of 2-D angles of arrival using two parallel uniform linear arrays[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(9): 2627-2632.
  • 10Glisic S,Nikolic Z,Milosevic N,et al.Advanced frequency hopping modulation for spread spectrum WLAN[J].IEEE Journal on Selected Areas in Communications,2000,18(1):16-29.

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部