期刊文献+

汽车关门声品质评价参数的建立 被引量:12

A Matric for Sound Quality Evaluation of Car's Door-slamming
在线阅读 下载PDF
导出
摘要 针对汽车关门声品质评价问题,基于Hilbert-Huang变换,研究提出一个新的声品质评价参数—SMHHT(Sound Metric based on Hilbert-Huang Transform)。在进行汽车关门声品质评价时,先采集汽车关门声音信号,进行EMD分解和Hilbert变换,再根据得到的瞬时频率对相应的IMF分量进行临界频率带计权并计算其能量,即可得到新的声品质评价参数SMHHT。为了验证该参数的有效性,将该参数和传统的声品质评价参数(响度,尖锐度)分别与主观评价结果进行相关性分析,结果表明提出的声品质评价参数SMHHT与主观评价结果有更高的相关性,能更准确的评价汽车关门声品质。 A new parameter for sound quality evaluation of car's door-slamming, sound metric based on Hilbert-Huang transform (SMHHT) was developed. At first, the sound signals of door-slamming were sampled, decomposed by EMD and transformed by Hilbert Transform. Then, using the instantaneous frequency, the corresponding IMF components were weighted by critical frequency band, their energies were calculated, and the new sound metric SMHHT for sound quality evaluation was determined. In order to verify the effectiveness of the new sound metric, correlation analyses between the new sound metric and the subjective evaluation results, and between the traditional sound quality evaluation parameters, including loudness and sharpness, and the subjective evaluation results were carried out respectively. The result shows that the new sound metric proposed in this paper has a higher correlation with the subjective evaluation values than the other. Thus, the new sound metric can evaluate the door-slamming sound quality more accurately.
出处 《噪声与振动控制》 CSCD 2013年第3期132-137,共6页 Noise and Vibration Control
基金 湖南大学汽车车身先进设计制造国家重点实验室自主课题(60870002)项目资助
关键词 声学 HILBERT-HUANG变换 汽车NVH 响度 尖锐度 声品质评价参数 acoustics Hilbert-Huang transform vehicle NVH loudness sharpness metric of sound quality
  • 相关文献

参考文献8

  • 1Kazuhiro Tsuge, Kunio Kanamaru, etc. A study of noise in a vehicle passenger compartment during acceleration[R]. Proceeding of the 1985 SAE Noise and Vibration Conference, SAE 850965.
  • 2杨川,于德介.基于伪WIGNER-VILLE分布的汽车关门声品质评价参数研究[J].机械工程学报,2011,47(24):91-96. 被引量:19
  • 3LEE S. K, KIM H W, NA E W. Improvement of impact noise in a passenger car utilizing sound metric based on wavelet transform[J]. Journal of Sound and Vibration, 2010, 329: 3606-3619.
  • 4LEE S. K., Objective evaluation of interior sound quality in passenger cars during acceleration[J]. Journal of Sound and Vibration, 2008, 310: 149-168.
  • 5Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationay time series analysis[J]. Prie. R. Soc, 1998, 44: 903-905.
  • 6Ishibashi M, Preis A, Satoh F. Relationships between arithmetic averages of sound pressure level calculated in octave bands and Zwicker' s loudness level[J]. Applied Acoustics, 2006, 67(7):720-730.
  • 7Zwicker E, Fastl H. Psychoacoustics: Facts and models [M]. 2 nd ed. New York: Springer, 1999.
  • 8高印寒,孙强,粱杰,谢军.B级轿车车内噪声品质的主观评价研究[J].噪声与振动控制,2010,30(4):115-118. 被引量:12

二级参考文献20

  • 1毛东兴,高亚丽,俞悟周,王佐民.声品质主观评价的分组成对比较法研究[J].声学学报,2005,30(6):515-520. 被引量:56
  • 2Heinrichs Bodden M. Sound quality evaluation of interior vehicle noise using an efficient psyehoaeoustie method [ C]. Proc of Euro noise 98, 1998.
  • 3Shkreli V. The use of subjective jury evaluations for interior acoustic packaging [ C ]. SAE International, 2003 - 01 - 1506.
  • 4Otto N, Amman S, Eaton C. Guidelines for jury evaluations of automotive sounds[ C]. SAE International, 1999 - 01 - 1822.
  • 5Fry J, Jennings P. Jury evaluation of sound quality using neural networks [ J]. RASC,2002:301 - 306.
  • 6Lemaitre G, Susini P. Perceptual characterization of the timbre of car horns [ C ]. EAA congress, S ville, Espagne, 2002.
  • 7Parizet E. Paired comparison listening tests and circular error rates[ J ]. ACTA Acustica United with Acustica, 2002, 88(4) :594 - 598.
  • 8Schneider M, Wilhelm M. Development of vehicle sound quality-targets and methods [ C ]. SAE International, 971976.
  • 9Noumura K, Yoshida J. Perception modeling and quantifi- cation of sound quality in cabin [ C ]. SAE International, 2003 - 1 - 1514.
  • 10LEE H H,LEE S K.Objective evaluation of interior noise booming in a passenger car based on sound metrics and artificial neural networks[J].Applied Ergonomics,2009,40(5):860-869.

共引文献28

同被引文献48

引证文献12

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部