期刊文献+

(α,β)-模糊向量子空间

(α,β)-fuzzy vector subspaces
在线阅读 下载PDF
导出
摘要 利用模糊点和模糊集的邻属关系,给出了(α,β)-模糊向量子空间的定义,根据α,β的不同组合得到16种(α,β)-模糊向量子空间,并给出了它们之间的关系;讨论了(α,β)-模糊向量子空间与模糊集截集的相关定理;重点讨论了(∈,∈)-模糊向量子空间、(∈,∈∨q)-模糊向量子空间和(∈∧q,∈)-模糊向量子空间,并给出了相关定理. The definition of (α,β)-fuzzy vector subspaces is firstly introduced by the use of the neigh- borhood relations between fuzzy points and fuzzy sets, and 16 kinds of (α,β)-fuzzy vector subspaces are obtained for the different composition of a andβ,their relations of above various fuzzy vector sub- spaces are given; Secondly, the theories on (α,β)-fuzzy vector subspaces and cut sets of fuzzy sets are discussed ; Finally, we focus on (∈,∈)- fuzzy vector subspaces, ( ∈,∈∨q)- fuzzy vector subspaces and ( ∈∧q,∈)- fuzzy vector subspaces and corresponding theorems are acquired.
出处 《辽宁师范大学学报(自然科学版)》 CAS 2013年第2期155-158,共4页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金项目(61170255)
关键词 模糊集 向量空间 模糊向量空间 fuzzy sets vector spaces fuzzy vector subspaces
  • 相关文献

参考文献13

  • 1KATSARAS A K, LIU D B. Fuzzy vector spaces and fuzzy topological vector spaces[J]. J Math Anal Appl, 1977,58:135-146.
  • 2NANDA S. Fuzzy fields and fuzzy linear spaces[J]. Fuzzy Sets and Systems, 1986,19 (1) :89-94.
  • 3GODFERY C, MUGANDA. Fuzzy linear and affine space[J]. Fuzzy Sets and Systems, 1990,38(3) :365-373.
  • 4LOWEN R. Convex fuzzy sets[J]. Fuzzy Sets and Systems,1980,3(3) :291-310.
  • 5张成,夏尊铨,邹开其.模糊仿射空间与模糊向量子空间[J].大连理工大学学报,2003,43(3):262-265. 被引量:4
  • 6刚家泰.α-模糊向量空间[J].辽宁师范大学学报(自然科学版),2001,24(1):18-20. 被引量:3
  • 7廖祖华.(∈,∈Vq)-型模糊向量空间[J].模糊系统与数学,1999,13:181-184.
  • 8LUBCZONOK P. Fuzzy vector spaces[J]. Fuzzy Sets and Systems, 1990,38:329-343.
  • 9BHAKAT S K, DAS P. On the definition of a fuzzy subgroup[J]. Fuzzy Sets and Systems, 1992,51:235-241.
  • 10YUAN X H, LEE E S. The definition of convex fuzzy subset[J]. Computers and Mathematics with Applications, 2004,47 101-113.

二级参考文献8

  • 1KATSARAS A K, LIU D B. Fuzzy vector spaces and fuzzy topological vector spaces [J]. J Math Anal Appl, 1977, 58:135-146.
  • 2ABUOSMANMT. On t-fuzzy subfield and t-fuzzy vector subspaces [J]. Fuzzy Sets Syst, 1989, 33:111-117.
  • 3NANDA S. Fuzzy fields and fuzzy linear spaces [J].Fuzzy Sets Syst, 1986, 19:89-94.
  • 4GODFREY C, MUGANDA. Fuzzy linear and affine spaces [J]. Fuzzy Sets Syst, 1990, 38:365-373.
  • 5ROCKAFELLAR R T. Convex Analysis [M]. New Jersey: Princeton University Press, 1972. 1-10.
  • 6LOWEN R. Convex fuzzy sets [J]. Fuzzy Sets Syst, 1980, 3: 291-310.
  • 7ABDUKHALIKOV K S. The dual of a fuzzy subspaces [J]. Fuzzy Sets Syst, 1996,82:375-381.
  • 8赵秋,袁学海.α-fuzzy子群[J].辽宁师范大学学报(自然科学版),2000,23(2):133-135. 被引量:3

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部