期刊文献+

无约束优化问题的修正WYL共轭梯度法及其收敛性质

A Modified WYL Conjugate Gradient Method for Unconstrained Optimization and its Convergence Properties
在线阅读 下载PDF
导出
摘要 在相关文献的基础上,提出无约束优化问题的修正WYL共轭梯度法,该方法不依赖于任何线搜索而满足充分下降性,证明了采用Arimijo型线搜索算法的全局收敛性,及在适当条件下算法具有R-线收敛速率,证明了采用重开始策略时算法具有n步二次收敛性。 Based on the relevant literatures, a new modified WYL conjugate gradient method for unconstrained optimization is proposed. The new method has sufficient descent property without any line search condition. Under Armijo-type line search, this paper shows that the new method possess- es global convergence and linear convergence rate. The new method is quadratic ally convergent with a restart strategy if the initial step length is appro- priate.
作者 黄海
出处 《广西民族师范学院学报》 2013年第3期1-4,共4页
基金 广西教育厅科研项目(201012MS215)
关键词 无约束优化 共轭梯度法 全局收敛 重开始策略 n步二次收敛 unconstrained optimization conjugate gradient method global convergence restart strategy n-step quadratic convergence
  • 相关文献

参考文献11

  • 1戴或虹,袁亚湘.非线性共轭梯度法[M].上海:上海科学技术出版社,2001.
  • 2Gilbert J C, Nocedal J.Global convergence properties of conjugate methods for optimization[J]. SIAM J Optim, 1992. 2(1).
  • 3Wei Z X, Yao S W, Liu L Y. The convergence properties of some new conjugate gradient methods[J].Appl Math Comput, 2006, 183(2).
  • 4Zhang L, Zhou W J, Li D H.A descent modified Polak-Ribiere-Polyak conjugate gradient method and its global convergence[J]. IMAJ Numer Anal, 2006, 26.
  • 5Li D H, Tian B S.N-step quadratic convergence of the MPRP method with a restart strategy[J].J Comput Appl Math, 2011, 235.
  • 6Hai Dong HUANG Yan Jun LI Zeng Xin WEI.Global Convergence of a Modified PRP Conjugate Gradient Method[J].Journal of Mathematical Research and Exposition,2010,30(1):141-148. 被引量:10
  • 7连淑君,王长钰.共轭下降法的全局收敛性(英文)[J].运筹学学报,2003,7(3):1-9. 被引量:8
  • 8黄海,潘义前,罗雁.Armijo型线搜索下的三项共轭梯度法[J].西北师范大学学报(自然科学版),2011,47(5):17-21. 被引量:2
  • 9ORTEGA J M, RHEINBOLDT W C.Iterative Solution of Nonlinear Equation in Seveal Variables[M].New York: Academic Press, 1970.
  • 10ROCKAFELLAR R T.Covex Analysis[M].New Jersey: Princeton University Press, 1970.

二级参考文献28

  • 1戴彧虹.Further insight into the convergence of the Fletcher-Reeves method[J].Science China Mathematics,1999,42(9):905-916. 被引量:16
  • 2戴或虹,袁亚湘.共轭下降法的全局收敛性[J].数学进展,1996,25(6):552-562. 被引量:32
  • 3BIRGIN E G, MARTINEZ J M. A spectral conjugate gradient method for unconstrained optimization [J]. Appl. Math. Optim., 2001, 43(2): 117-128.
  • 4DAI Yuhong, YUAN Yaxiang. Nonlinear Conjugate Gradient Methods [M]. Shanghai: Shanghai Scientific and Technical Publishers, 2000.
  • 5DAI Yuhong, YUAN Yaxiang. Further studies on the Polak-Ribiere-Polyak method [R]. Research Report ICM-95-040, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, 1995.
  • 6FLETCHER R, REEVES C M. Function minimization by conjugate gradients [J]. Comput. J., 1964, 7: 149-154.
  • 7GILBERT J C, NOCEDAL J. Global convergence properties of conjugate gradient methods for optimization [J]. SIAM J. Optim., 1992, 2(1): 21-42.
  • 8HESTENES M R, STIEFEL E. Methods of conjugate gradients for solving linear systems [J]. J. Research Nat. Bur. Standards, 1952, 49: 409-436.
  • 9POWELL M J D. Nonconvex Minimization Calculations and the Conjugate Gradient Method [M]. Springer, Berlin, 1984.
  • 10POLAK E, RIBIERE G. Note sur la convergence de methodes de directions conjuguees [J]. Revue Francaise d' Informatique et de Recherche Operationnelle, 1969, (16): 35-43. (in France).

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部