期刊文献+

一类椭圆边值问题的广义解

The Generalized Solution of an Elliptic Boundary Value Problem
在线阅读 下载PDF
导出
摘要 本文研究椭圆边值问题广义解的存在性.其中1≤N,1<p<+∞,λ>0,h∈Lv Rn,'.p1=p/p=1利用变分方法及临ε中至少存在的一个广义解. We discuss the existence of generalized solution of the elliptic boundary problem Where 1≤N,1〈p〈+∞,λ〉0,h∈LP'(RN),p′=p/P-1and obtaining this problem has at least one generalized solution in the space of εp by using variational method and critical point theory.
作者 陈林
出处 《伊犁师范学院学报(自然科学版)》 2013年第2期18-21,共4页 Journal of Yili Normal University:Natural Science Edition
基金 伊犁师范学院一般科研项目(2012YB013)
关键词 弱解 广义解 欧拉泛函 有下界 弱下半连续 weak solution generalized solution Euler functional bounded from below weakly rowersemi-continuous
  • 相关文献

参考文献4

二级参考文献20

  • 1[1]Boccardo L,Gallouet T.Non-linear Elliptic and Parabolic Equations Involving Measure Data[J].J.Funct.Anal.,1989,87(1):149-169.
  • 2[2]Dong Ge.Elliptic Equations with Measure Data in Orlicz Spaces[J].Electron.J.Diff.Eqns.,2008,2008(76):1-10.
  • 3[3]Aharoueh L,Benkirane A,Rhoudaf M.Existence Results for Some Unilateral Problems without Sign Condition with Obstacle Free in Orlicz Spaces[J].Nonlinear Analysis,2008,68(8):2362-2380.
  • 4[4]Benkirane A,Elmahi A.An Existence Theorem for a Strongly Nonlinear Elliptic Problem in Orlicz Spaces[J].Nonlinear Analysis,1999,36(1):11-24.
  • 5[5]Dong Ge,Shi Zhongrui.An Existence Theorem for Weak Solutions for a Class of Elliptic Partial Differential Systems in Orlicz Spaces[J].Nonlinear Analysis,2008,68(4):1037-1042.
  • 6[6]Dong Ge.An Existence Theorem for Weak Solutions for a Class of Elliptic Partial Differential Systems in General Orlicz-sobolev Spaces[J].Nonlinear Analysis,2008,69(7):2049-2057.
  • 7[7]Elmahi A,Meskine D.Non-linear Elliptic Problems Having Natural Growth and L1 Data in Orlicz Spaces[J].Annali di Matematica,2005,184(2):161-184.
  • 8[8]Elmahi A,Meskine D.Strongly Nonlinear Parabolic Equations with Natural Growth Terms in Orlicz Spaces[J].Nonlinear Analysis,2005,60 (1):1-35.
  • 9[9]Elmahi A,Meskine D.Elliptic Inequalities with Lower Order Terms and L1 Data in Orlicz Spaces[J].J.Math.Anal.Appl.,2007,328(2):1417-1434.
  • 10[10]Gossez J,Mustonen V.Variational Inequalities in Orlicz-sobolev Spaces[J].Nonlinear Analysis,1987,11(3):379-392.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部