期刊文献+

硝普钠对特发性血小板减少性紫癜模型小鼠脾脏还原型谷胱甘肽、氧化型谷胱甘肽含量的影响机制研究 被引量:2

Study on the influence of sodium nitroprusside on idiopathic thrombocytopenia purpura model mouse spleen antioxidants glutathione and oxidized glutathione content
原文传递
导出
摘要 目的探讨一氧化氮(NO)供体药物硝普钠腹腔注射特发性血小板减少性紫癜(ITP)模型小鼠后,对不同时间点小鼠脾脏内还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)的影响及意义。方法ITP模型小鼠分成NO供体药物硝普钠(SNP)组和磷酸盐缓冲液(PBS)对照组,SNP组用相同浓度(1mg/ml)的NO供体药硝普钠稀释液进行腹腔注射,PBS对照组使用相同体积的磷酸盐缓冲液进行腹腔注射,用药第5min、15min、25min、35min和45min后,检测外周血中NO及一氧化氮合酶(NOS)的表达,酶联免疫法(ELISA)法测定脾脏中GSH和GSSG含量。结果SNP组小鼠血清中NO及NOS在第5min,15min,25min,35min和45rain的浓度均高于PBS对照组(NO:t5=6.24,t15=8.65,t25=9.87,t35=11.20,t45=13.07;NOS:t5=5.47,t15=6.55,t25=8.04,t35=9.28,t45:11.54,P均〈0.05),相邻测量时间点NO及NOS含量均具有统计学意义(NO:t5-15=3.04,t15-25=4.11,t25-35=3.82,t35-45=3.54;NOS:t5-15=3.98,t15彩=5.04,t25-35=5.12,t35-45=4.26,P均〈0.05),GSH浓度随着时间的延长而降低,相邻时间点测量值有统计学意义(t5-15=5.62,t15-25,u25=4.90,t25-35,=5.21,t35-45=5.07,P均〈0.05),GSSG的含量随着时间的延长而升高,相邻时间点测量值有着显著性差异(t5-15=4.07,t15-25=6.57,t25-35=4.98,t35-45=5.41,P均〈0.05),GSH浓度分别与NO、NOS呈负相关(r=0.625,r=-0.534,均P〈0.01),GSSG浓度分别与NO、NOS呈正相关(r=0.714,r=0.687,均P〈0.01)。结论在ITP小鼠模型体内,NO供体药物硝普钠以时间依赖的形式减少GSH的含量,硝普钠可通过影响抗氧化系统GSH/GSSG来发挥相应的生理功能。 Objective To investigate the impact of sodium nitroprusside (SNP) on the concentration of antioxidants glutathione(GSH) and oxidized glutathione (GSSG) in the spleens of idiopathic thrombocytope- nia purpura (ITP). Method ITP model mice were divided into the nitric oxide (NO) donor drug SNP groups and phosphate buffered saline (PBS) control group. Intraperitoneal injection with the concentration ( 1 mg/ml) of SNP for SNP group while intraperitoneal injection using the same volume of PBS for PBS control group. The expression of NO, nitric oxide synthase (NOS) in peripheral blood and GSH / GSSG content in spleen was de- tected after medication for 5 min, 15 min ,25 min,35 min and 45min. Results Serum concentration of NO and NOS in SNP group were higher than the PBS control group in the first 5 rain, 15 min ,25 min ,35 min and 45min ( NO : t5 = 6. 24,t15 = 8.65, t25 = 9. 87, t35 = 11.20, t45 = 13.07 ; NOS : t5 = 5.47, t15 = 6. 55, t25 = 8. 04, t35 = 9. 28,t45 = 11. 54, all P 〈 0.05 ). NO and NOS eontent had statistical difference in each measurement time point ( NO : t5-15 = 3.04,t15-25 = 4. 11, t25-35 = 3.82, t35-45 = 3.54 ; NOS : t5-15 = 3.98, t15-25 = 5. 04, t25-45 = 5. 12, t35-5 = 4. 26, all P 〈 0.05 ). GSH concentration reduced with time while GSSG content increased with time ( GSH : t5-15 = 5.62, t15-25 = 4. 90, t25-35 = 5.21, t35-45 = 5. 07 ; GSSG : t5-15 = 4. 07, t15-25 = 6. 57, t25-35 = 4. 98, t35-45 = 5.41 ,all P 〈 0.05 ). GSH concentrations were negatively correlated with NO, NOS (r =-0. 625, r =-0. 534, both P 〈0.01 ). GSSG concentrations were positively correlated with NO, NOS ( r = 0. 714, r = 0. 687, both P 〈 0.01 ). Conclusion NO donor drug SNP reducd the level of GSH in a time-dependent pattern in ITP mice, SNP may play a physiological function by affecting the system of antioxidant GSH / GSSG.
出处 《国际免疫学杂志》 CAS 2013年第4期314-318,共5页 International Journal of Immunology
基金 山东省自然科学基金(ZR2010HL038) 济宁市科技发展计划资助项目(2012jnje16)
关键词 一氧化氮 一氧化氮合酶 谷胱甘肽 特发性血小板减少性紫癜 Nitric oxide Nitric oxide synthase Glutathione Idiopathic thrombocytopenic purpura
  • 相关文献

参考文献20

  • 1Pignatti F, Flores B, Jonsson B. Platelet response as the basis for approval in chronic immune (idiopathic) thrombocytopenicpurpura (ITP) : a regulatory perspective. Am J Hematol, 2012 ,87 (10) : 943 -944.
  • 2Akytiz M, Caliskan S, Kaya C. Bilateral ureteral stones and spon- taneous perirenal hematoma in a patient with chronic idiopathic thromboeytopenic purpura. Korean J Uro1,2012,53 (7) :502-504.
  • 3Chiche L, Brescianini A, Mancini J,et al. Evaluation of a proto- type electronic personal health record for patients with idiopathic thrombocytopenic purpura. Patient Prefer Adherence, 2012,6 : 725 - 734.
  • 4Roeha AM, Souza C, Rocha GA,et at. The levels of IL-17A and of the cytokines involved in Thl7 cell commitment are increased in patients with chronicimmune thrombocytopenia. Haematologica, 2011,96(10) : 1560-1564.
  • 5Li X, Zhong H, Bao W, et al. Defective regulatory B-cell com- partment in patients with immune thrombocytopenia. Blood,2012, 120(16) :3318-3325.
  • 6Tesse R, Del Vecchio GC, De Mattia D, et al. Association of in- terleukin-(IL) 10 haplotypes and serum IL-10 levels in the pro- gression of childhood immune thrombocytopenic purpura. Gene, 2012,505 ( 1 ) :53-56.
  • 7Akbayram S, Do,an M, Akgtin C, et al. The association of oxidant status and antioxidant capacity in children with acute and chronic ITP. J Pediatr Hematol Oncol,2010,32(4) :277-281.
  • 8Kamhieh-Milz J, Bal G, Sterzer V, et al. Reduced antioxidant ca- pacities in platelets from patients with autoimmune thrombocytope- niapurpura(ITP). Platelets, 2012,23 ( 3 ) : 184-194.
  • 9Dimitroulas T, Sandoo A, F-tas GD. Asymmetric dimethylarginine as a surrogate marker of endothelial dysfunction and cardiovascular risk in patients with systemic rheumatic diseases. Int J Mol Sci, 2012,13(10) :12315-12335.
  • 10Blyszczuk P, Berthonneche C, Behnke S,et al. Nitric oxide syn- thase 2 is required for conversion of pro-fibrogenic inflammatory CD133 + progenitors into F4/80 + macrophages in experimental autoimmune myocarditis. Cardiovasc Res, 2012,97 ( 2 ) : 219- 229.

二级参考文献48

  • 1吴蕊,凃玲.氧化应激与心血管疾病[J].心血管病学进展,2007,28(1):110-113. 被引量:25
  • 2金呈强 刘仿 肖红 等.活化的PPAR-γ对Jurkat系T肿瘤细胞NO生成诱导的研究.中国免疫学杂志,2008,24:6-6.
  • 3Beardsley D S. Pathophysiology of immune thrombocytopenic purpura[ J ]. Blood Rev,2002; 16(1) : 13-14.
  • 4Racke M K, Gocke A R, Muir M et al. Nuclear receptors and autoimmune disease: the potential of PPAR agouists to treat multiple sclerosis [ J ]. J Nutr, 2006 ; 136 (3) : 700-703.
  • 5WU C L, XU J C, LI F et al. Polarization and apoptosis of T cell subsets in idiopathic thrombocytopenic purpura [ J ]. lnt J Lab Hematol, 2007 ; 29 (3) : 177-184.
  • 6Kasono K, Nishida J, Tamemoto H et al. Thiazolidinediones increase the number of platelets in immune thrombocylopenic purpura mice via inhibition of phagocytic activity of the reticulo-endothelial system[J]. Life Sci, 2002 ; 17 : 2037-52.
  • 7Waits G F, Staels B. Regulation of endothclial Nitric Oxide synthase by PPAR agonists: molecular and clinical pcrspectives [ J ]. Arterioscler Thromb Vase Biol, 2004 ; 24 : 619-621.
  • 8Napimoga M H, Vieira S M, Dal-Secco D et al. Peroxisome proliferatoractivated receptor-γ ligand, 15- Deoxy- △ 12, 14-pmstaglmldin J2, reduces neutrophil migration via a Nitric Oxide pathway [ J ]. J Immunol, 2008; 180:609-617.
  • 9Goya Kayoko, Sumitani Satom, Xu Xin et al. Peroxisome proliferator-activated receptor a agonists increase nitric oxide synthase expression in vascular endothelial cells [ J ]. Arterioscler Thromb Vasc Biol, 2004; 24 (4) : 658-663.
  • 10Cho D H, Choi Y J, Jo S A et al. Nitric Oxide produetion and regulation of endothelial nitric-oxide synthase phosphorylation by prolonged treatment with Troglitazone [ J ]. J Biol Chem, 2004 ; 279 (4) : 2499-2506.

共引文献4

同被引文献43

  • 1Arabs S,Glynn SA. Candidate pathways linking inducible nitric oxide synthase to a basal-like transcription pattern and tumor progression in human breast cancer [J]. Cell Cycle,2011 ,10(4) :619-624.
  • 2Kuhr F, Lowry J, Zhang Y, et al. Differential regulation of inducible and endothelial nitric oxide synthase by kinin B1 and 132 receptors [J]. Neuropeptides,2010,44(2) :145-154.
  • 3Kim YS, Pi SH, Lee YM, et al. The anti-inflammatory role of heine oxygenase-1 in lipopolysaccharide and cytokine-stimulated inducible nitric oxide synthase and nitric oxide production in human periodon- tal ligament cells [ J ]. J Periodonto1,2009,80(12) :2045-2055.
  • 4Lee M, Choy JC. Positive feedback regulation of human inducible nitric-oxide synthase expres6ion by Ras protein S-nitrosylation [ J]. J Biol Chem,2013,288(22) :15677-15686.
  • 5Chenevier-Gobeaux C, Simonneau C, Lemarechal H, et al. Hypoxia induces nitric oxide synthase in rheumatoid synovlocytes: conse- quences on NADPH oxidase regulation [ J ]. Free Radic Res, 2012,46(5) :628-636.
  • 6Pandit L, Kolodziejska KE, Zeng S, et al. The physiologic aggre- some mediates cellular inactivation of iNOS [ J]. Proc Nad Acad Sci U S A,2009,106(4) :1211-1215.
  • 7Burke A J, Sullivan FJ, Giles FJ, et al. The yin and yang of nitric oxide in cancer progression [ J ]. Carcinogenesis, 2013,34 ( 3 ) : 503-512.
  • 8Singh S, Gupta AK. Nitric oxide:role in tumour biology and iNOS/ NO-based anticancer therapies [ J ]. Cancer Chemother Pharmacol, 2011,67(6) :1211-1224.
  • 9Jayashankar B, Mishra KP, Kumar MS, et al. A supercritical CO2 extract from seabuckthoru leaves inhibits pro-inflammatory media- tors via inhibition of mitogen activated protein kinase p38 and transcription factor nuclear factor-KB [ J ]. Int Immunopharmacol, 2012,13(4) :461-467.
  • 10Brahmaehari S,Jana A,Pahan K. Sodium benzoate,a metabolite of cinnamon and a food additive,reduces mieroglial and astroglial in- flammatory responses [ J ]. J Immuno1,2009,183 (9) :5917 -5927.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部