期刊文献+

基于小波变换的钢结构连廊损伤识别 被引量:3

Damage Identification of Steel Structure Corridor Based on Wavelet Transform
在线阅读 下载PDF
导出
摘要 以某实际钢结构连廊为背景,采用ANSYS软件建立连廊结构的三维有限元分析模型,通过现场环境振动测试验证了文中连廊结构模型的合理性。针对这一较复杂结构的损伤识别问题,文中基于小波变换理论,构建了一种"变异放大系数"。本文的数值计算算例表明,利用这种"变异放大系数"曲线的峰值可以更有效地判别损伤位置,而"变异放大系数"峰值的大小则可较方便地判别结构的损伤程度。同时,文中探讨了不同小波函数和尺度伸缩因子对连廊结构单处和两处损伤的识别效果的影响,给出了小波函数和尺度伸缩因子的取值建议。 Selecting a steel structure corridor as the research object, the 3D finite element model was es- tablished by ANSYS program, and the reasonability of numerical model was verified by ambient vibration test. Aiming at the problem of complex structure damage identification, a new parameter named "Varia- tion Magnify Coefficient (VAMA)" was proposed based on wavelet transform theory. The numerical simu- lation presented that the structure damage location could be detected more effectively through the peak of VAMA curve, also the damage degree could be discriminated according to the VAMA peak value. Besides, the influence to single and double damage identification caused by different wavelet function and different scaling dilation factor was discussed, and the suggested values of wavelet function and scaling dilation factor were proposed.
出处 《力学季刊》 CSCD 北大核心 2013年第2期302-309,共8页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(50978198)
关键词 小波变换 钢结构连廊 损伤识别 变异放大系数 wavelet transform steel structure corridor damage identification variation magnify coefficient
  • 相关文献

参考文献5

二级参考文献13

  • 1滕海文,江见鲸,霍达.基于小波变换的结构损伤诊断研究[J].武汉理工大学学报,2006,28(10):58-60. 被引量:12
  • 2Liew K M, Wang Q. Application of wavelet theory for crack identification in structure. Journal of Engineering Mechanics ,1998,124(2): 152~ 157
  • 3Hou Z, Noori M, Amand R St. Wavelet-based approach for structural damage detection. Journal of Engineering Mechanics, 2000,126 (7): 677 ~ 683
  • 4Wang Q, Deng X M. Damage detection with spatial wavelets. International Journal of Solids and Structures, 1999,36: 3443~ 3468
  • 5Sun Q. Singularity analysis using continous wavelet transform for bearing fault diagnosis. Mechanical Systems and Signal Processing,2002,16(6) :1025~1041
  • 6陈逢时.子波变换理论及其在信号处理中的应用.北京:国防工业出版社,1998
  • 7Robert YL, Jialou Hu, Fred Choy. Theoretical study of crack-induced eigenfrequency changes on beam structures. Journal of Engineering Mechanics, 1992,118(2) :384~396
  • 8Ovanesova A V,Sua'rez L E.Applications of Wavelet Transforms to Damage Detection in Framestructures[J].Engineering Structures,2004,26:39-49.
  • 9Yam L H,Yan Y J,Jiang J S.Vibration-based Damage Detection for Composite Structures Using Wavelet Transform and Neural Network Identification[J].Composite Structures,2003,60:403-412.
  • 10Ovanesova A V, Sua'rez L E. Applications of wavelet trans-forms to damage detection in frame structures. Engineering Structures 2004,26 : 39-49.

共引文献38

同被引文献18

  • 1邱颖,任青文,朱建华.基于小波奇异性的梁结构损伤诊断[J].工程力学,2005,22(S1):146-151. 被引量:14
  • 2Roy R.Craig,Jr.结构动力学[M].北京:人民交通出版社,1996:150-164.
  • 3Morassi A, Rovere N. Localizing a notch in a steel frame from frequency measurements [ J ]. Journal of Structural Engineering, ASCE, 1997,123 (5) :422-432.
  • 4Pandey A K, Biswas M, Samman M M. Damage detection from changes in curvature mode shape [ J ]. Journal of Sound and Vi- bration, 1991,145 (2) : 321-332.
  • 5Kaminski P C. The approximation location of damage through the analysis of natural frequencies with artificial networks [ J ]. Journal of Process Mechanical Engineering, 1995,209 ( E2 ) : 117-124.
  • 6Qiu Ying, Cao Maosen. A Novel Wavelet Condition Index on damage diagnosis on beams [ A ]. Ninth International Confer- ence on Engineering Structural Integrity Assessment, 2007, Beijing,PRC. (ISTP).
  • 7R·克拉夫,J·彭津.结构动力学[M].2版.北京:高等教育出版社,2010.
  • 8管德清,蒋欣.基于转角模态小波变换的连续梁损伤识别研究[J].长沙理工大学学报(自然科学版),2007,4(4):29-32. 被引量:7
  • 9王振林,聂国华.基于曲率模态和小波奇异性的结构损伤识别[J].力学季刊,2008,29(2):278-283. 被引量:4
  • 10王德玲,沈疆海,张系斌.ANSYS在结构动力学和工程抗震教学中的应用[J].水利与建筑工程学报,2010,8(1):39-41. 被引量:18

引证文献3

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部