期刊文献+

利用半导体InGaN/GaN量子阱的高效太阳电池 被引量:1

The Efficient Solar Cell Using of the Semiconductor InGaN/GaN Quantum Well
在线阅读 下载PDF
导出
摘要 在简述了量子结构太阳电池的发展及研究现状的基础上,从量子结构太阳电池的结构模型出发,用第一性原理来计算极限效率,并根据Shockley-Queisser极限和Pin结的细致平衡原理,对InGaN量子结构太阳电池的极限效率、光学性质和电学性质进行了相关的理论分析和计算,细致平衡模型计算,当势垒为1.73eV,势阱为1.12eV时,电池转换效率为58.4%;势垒为1.89eV,势阱为1.35eV时,电池转换效率为55.3%. On the basis of the summarization of the development and research status of quantum structure solar cell, starting from the structural model of quantum structure solar cells, the First principles was used to calculate the limit efficiency, and according to the Shockley-Queisser limit and the principle of detailed balance of a p-i-n junetion, theoreti- cal analysis and calculation for the limit efficiency, optical properties and electrical properties of the InGaN quantum structure solar cell were carried out. When a barrier is 1.73 eV and potential well is 1.12 eV, the battery conversion efficiency is 58.4%. When a barrier is 1.89 eV and potential well is 1.35 eV, the battery conversion efficiency is 58.4%.
作者 田燕
出处 《海南师范大学学报(自然科学版)》 CAS 2013年第2期156-160,188,共6页 Journal of Hainan Normal University(Natural Science)
关键词 太阳电池 量子结构 极限效率 量子阱 solar cell quantum structure limit efficiency quantum well
  • 相关文献

参考文献11

  • 1张小宾.InGaN太阳能电池理论模拟及制备研究[D].北京:中国科学院半导体研究所,2010.
  • 2Kerr M J, Campbed P, Cuevas A. Lifetime and efficiency limits of crystalline silicon solar cells[C]. Photovoltaic spe- cialists conference, conference Record of the Twenty-Ninth IEEE, 2002:438-441.
  • 3包科达,刘秀华.试论热学课程中的平衡态概念及其与细致平衡原理的关系[J].大学物理,1997,16(7):35-37. 被引量:1
  • 4Mattheis J, Wemer J H, Rau U. Finite mobility effects on the radiative efficiency limit of pn-junction solar cells[ J ]. Phys Rev B,2008,77:8.
  • 5李震宇,贺伟,杨金龙.密度泛函理论及其数值方法新进展[J].化学进展,2005,17(2):192-202. 被引量:63
  • 6Aulbur W G, Jonsson L, Wilkins J W. Solid State Phys: Advances in Research and Applications[ J ]. Aca-demic, San Diego,2000,54:1-281.
  • 7Adolph B, Gavrilenko V I, Tenelsen K, et al. Nonlocality and many-body effects in the optical properties of semi- conductors[ J ]. Phys Rev B, 1996,53:9797-9808.
  • 8Wurfel P. The chemical potential of radiation[ J ]. Phys C, 1982,15:3967.
  • 9林硕,沈晓明,张保平,李福宾,李建功,孟祥海.InGaN单结太阳电池中的浅能级杂质的理论计算和模拟[J].科学通报,2010,55(15):1446-1452. 被引量:4
  • 10Marti A, Araujo G L. Limiting efficiencies for photovoltaic energy conversion in multigap systems[ J ]. Sol Energy Mater Sol Cells,1996,43:203-222.

二级参考文献148

  • 1Wu J, Walukiewicz W, Yu K M, et al. Unusual properties of the fundamental band gap of InN. Appl Phys Lett, 2002, 80:3967-3969.
  • 2Matsuoka T, Okamoto H, Nakao M, et al. Optical bandgap energy of wurtize InN. Appl Phys Lett, 2002, 81:1246-1248.
  • 3Shen X M, Lin S, Li F B, et al. Simulation of the InGaN-based tandem solar cells. In: Proceedings of SPIE: Photovoltaic Cell and Module Technologies Ⅱ, San Diego, CA, USA, 2008.
  • 4Jani O, Honsberg C, Asghar A, et al. Characterization and analysis of InGaN photovoltaic devices. In: Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Orlando, FI, USA, 2005.
  • 5Jani O, Honsberg C, Kurtz S. Design and characterization of GaN/InGaN solar cells. Appt Phys Lett, 2007, 91 : 132117.
  • 6Yang C B, Wang X L, Xiao H L, et al. Photovoltaic effects in lnGaN structures with p-n junctions. Phys Status Solidi A, 2007, 204: 4288-4291.
  • 7Zhang X B, Wang X L, Xiao H L, et al. Simulation of In0.65Ga0.35N single-junction solar cells. J Phys D: Appl Phys, 2007, 40:7335-7338.
  • 8Hamzaoui H, Bouazzi A S, Rezig B. Theoretical possibilities of InxGa1-xN tandem PV structures. Sol Energ Mat Sol C, 2005, 87: 595-603.
  • 9Islam M R, Enamul K A N M, Bhuiyan A G. Projected performance of InxGa1-xN multi-junction solar cells. J Electr Electron Eng, 2006, 6: 251-255.
  • 10Barker A S, Hegems M. Infrared lattice vibrations and free-electron dispersion in GaN. Phys Rev B, 1973, 7:743-750.

共引文献73

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部