期刊文献+

基于肤色分割与改进Adaboost算法的人脸检测 被引量:2

An improved Adaboost algorithm for face detection based on skin color segmentation
在线阅读 下载PDF
导出
摘要 针对低分辨率的视频监控图像在复杂环境中不能有效地将人脸检测出来,提出结合BP神经网络的肤色训练和肤色分割,形成一个检测兴趣区域,利用改进的Adaboost算法来完成人脸检测。实验结果表明,改进的方法提高了人脸检测的准确率,降低了视频监控图像的误检率。 Face can't be detected effectively from low-resolution video surveillance image in some circumstance,by combining the skin color training and segmentation of BP neural network,a detection area of interest is formed,the improved Adaboost algorithm is used for face detection.The experimental results show that the proposed method improves face detection accuracy and reduces the false detection rate of video surveillance images.
出处 《桂林电子科技大学学报》 2013年第4期319-322,共4页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61262074 61162008) 广西可信软件重点实验室主任基金(kx201101) 广西高校优秀人才资助计划(桂教人201065) 广西自然科学基金(2012GXNSFCA053009) 广西教育厅科研项目(201204LX126)
关键词 肤色训练 BP神经网络 人脸检测 ADABOOST算法 skin color training BP neural network face detection Adaboost algorithm
  • 相关文献

参考文献10

  • 1Jalaleddin S,Rad M,Kaveh M,et al. Classification of rice varieties using optimal color and texture features and BP neural networks[C]//Machine Vision and Image Pro- cessing (MVIP), 2011.
  • 2Chaudry Q,Sharma Y, Raza S H,et al. Development of a novel 2D color map for interactive segmentation of his- tological images[C]// 9th IEEE International Symposi- um on Biomedical Imaging (ISBI) ,2012 :178-181.
  • 3Zhao Hongxia, Wang Tao. Study on conversion method of color space under a big color gamut[C]//2007 Inter- national Conference on Computational Intelligence and Security, 2007 : 386-390.
  • 4Li Z, Xue L, Tan F. Face detection in complex back- ground based on skin color features and improved Aria- Boost algorithms[C]//2010 IEEE international Confer- ence on Progress in Informatics and Computing, 2010: 723-727.
  • 5Lee S, Kwak Y,Kim Y J, et al. Contrast-preserved chro- ma enhancement technique using YCbCr color space[J]. IEEE Transactions on Consumer Electronics, 2012, 58 (2) :641-645.
  • 6王超,崔更申,黄廷辉,余益民.线上线下结合的实时手势跟踪系统[J].桂林电子科技大学学报,2012,32(2):125-128. 被引量:2
  • 7Viola P,Jones M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2001:511518.
  • 8李文辉,倪洪印.一种改进的Adaboost训练算法[J].吉林大学学报(理学版),2011,49(3):498-504. 被引量:23
  • 9李明瑞,傅明,曹敦.基于肤色检测的AdaBoost人脸检测算法改进[J].计算机工程,2012,38(19):147-150. 被引量:22
  • 10Cheng Wenchang, Mao Jhanding. A cascade classifier using Adaboost algorithm and support vector machine for pedestrian detection[C]//Systems, Man, and Cy- bernetics (SMC) ,2011 : 1430-1435.

二级参考文献30

  • 1陈卫,周晓,叶菲,谭营.AdaBoost-NN在雷达信号识别中的应用[J].电子对抗技术,2005,20(1):29-33. 被引量:4
  • 2武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 3朱谊强,张洪才,程咏梅,杨涛,赵春晖.基于Adaboost算法的实时行人检测系统[J].计算机测量与控制,2006,14(11):1462-1465. 被引量:13
  • 4李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:54
  • 5LUO Sheng,YE Xing-quan.Efficient Improvement for Adaboost Based Object Detection[C]//CINC'09 Proceedings of the 2009 International Conference on Computational.Washington DC:IEEE Computer Society,2009:95-98.
  • 6Papageorgiou C,Poggio T.A Trainable System for Object Detection[J].International Journal of Computer Vision,2000,38(1):15-33.
  • 7Schapire R E,Singer Y.Improved Boosting Algorithms Using Confidence-Rated Predictions[J].Machine Learning,1998,37(3):297-336.
  • 8Freund Y,Schapire R E.A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting[C]//COLT' 95 Proceedings of the Second European Conference on Computational Learning Theory.Berlin:SpringerVerlag,1995:23-37.
  • 9Schapire R E.The Strength of Weak Learn Ability[J].Machine Learning,1990,5(2):197-227.
  • 10Viola P,Jones M J.Robust Real-Time Face Detection[J].International Journal of Computer Vision,2004,57 (2):137-154.

共引文献44

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部