期刊文献+

基于分形维数和小波域特征的计算机生成图像检测算法

Detection of Computer Generated Images Based on Fractal Dimension and Wavelet Domain Features
在线阅读 下载PDF
导出
摘要 针对自然图像与计算机生成图像在统计特征上存在的差异,提出一种基于分形维数和小波域特征的计算机生成图像盲鉴别算法,该算法基于统计特征对图像进行真伪识别.在使用支持向量机作为分类器的情况下,对800张标准图像进行实验的结果表明,该算法对计算机生成图像检测准确率达96.5%,明显提高了计算机生成图像的识别精度,为数字图像的真实性提供了保证. In view of the perceptual differences between photographic and computer generated images primarily existed in statistical features,an identification algorithm for photographic and computer generated images was proposed,which is based on fractal dimension and wavelet domain features.The algorithm that is based on the statistical characteristics was used to recognize the authenticity of images.In the process of our experiment,800 standard images were used as the image database,the support vector machine was used as the classifier,and the detection accuracy rate of the computer generated images could reach 96.5% in the algorithm.It has significantly improved the accuracy of identifying computer generated images,and provides a guarantee of the authenticity of the digital image.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第4期653-658,共6页 Journal of Jilin University:Science Edition
基金 吉林省自然科学基金(批准号:201215165) 符号计算与知识工程教育部重点实验室开放基金(批准号:93K172010K05)
关键词 自然图像 计算机生成图像 小波域 分形维数 支持向量机 photographic image computer generated image wavelet domain fractal dimension support vector machine
  • 相关文献

参考文献12

二级参考文献57

  • 1张志,董福安,伍友利.二维灰度图像的分形维数计算[J].计算机应用,2005,25(12):2853-2854. 被引量:24
  • 2于子凡,杜贵君,林宗坚.图像盒子维数特征计算方法改进[J].测绘科学,2006,31(1):87-89. 被引量:9
  • 3Lyu S, Farid H. How realistic is photorealistic[J]. IEEE Trans. Signal Processing, 2005, 53(2):845 - 850.
  • 4Tian-Tsong Ng, Shih Fu Chang, Mao-Pei Tsui. Physicsmotivated features for distinguishing photographic images and computer graphics[C], in ACN Multimedia, Singapore, November 2005.
  • 5T.-T. Ng, S.-F. Chang, J. Hsu, m. Pepeljugoski. Columbia photographic images and photorealistic computer graphics dataset[C]. ADVENT Technical Report 205-2004-5, Columbia University, Feb 2005.
  • 6Adams J, Parulski K, and Spaulding K. Color processing in digital cameras. IEEE Micro, 1998, 18(6): 20-30.
  • 7Popescu A C and Farid H. Exposing digital forgeries in color filter array interpolated images. IEEE Trans. on Signal Processing, 2005, 53(10): 3948-3959.
  • 8Bayram S, Sencar H, and Memon H, et al.. Source camera identification based on CFA interpolation. IEEE International Conference on Image Processing, Genova, Italy, Sep. 11-14, 2005, Vol. 3: III-69-72.
  • 9Bayram S, Sencar H, and Memon N. Improvements on source camera-model identification. IFIP Working Group 11.9 on Digital Forensics, Orlando, Florida, USA, Jan.29-Feb.1, 2006.
  • 10Gallagher A C. Detection of linear and cubic interpolation in JPEG compressed images. The 2nd Canadian Conference on Computer and Robot Vision 2005, Victoria, BC, Canada, May, 9-11, 2005: 65-72.

共引文献2309

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部