期刊文献+

Accelerated Matrix Recovery via Random Projection Based on Inexact Augmented Lagrange Multiplier Method 被引量:4

Accelerated Matrix Recovery via Random Projection Based on Inexact Augmented Lagrange Multiplier Method
在线阅读 下载PDF
导出
摘要 In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000. In this paper, a unified matrix recovery model was proposed for diverse corrupted matrices. Resulting from the separable structure of the proposed model, the convex optimization problem can be solved efficiently by adopting an inexact augmented Lagrange multiplier (IALM) method. Additionally, a random projection accelerated technique (IALM+RP) was adopted to improve the success rate. From the preliminary numerical comparisons, it was indicated that for the standard robust principal component analysis (PCA) problem, IALM+RP was at least two to six times faster than IALM with an insignificant reduction in accuracy; and for the outlier pursuit (OP) problem, IALM+RP was at least 6.9 times faster, even up to 8.3 times faster when the size of matrix was 2 000×2 000.
机构地区 School of Sciences
出处 《Transactions of Tianjin University》 EI CAS 2013年第4期293-299,共7页 天津大学学报(英文版)
基金 Supported by National Natural Science Foundation of China (No.51275348) College Students Innovation and Entrepreneurship Training Program of Tianjin University (No.201210056339)
关键词 matrix recovery random projection robust principal component analysis matrix completion outlier pursuit inexact augmented Lagrange multiplier method 随机投影 拉格朗日乘数法 矩阵 拉格朗日乘子法 凸优化问题 主成分分析 恢复模式 加速技术
  • 相关文献

参考文献26

  • 1Cands E J, Romberg J, Tao T. Robust uncertainty princi- ples: Exact signal reconstruction from highly incomplete frequency information [J]. 1EEE Transactions on Informa- tion Theory, 2006, 52 (2) : 489-509.
  • 2Zhang C J, Liu J, Tian Q et al. Image classification by non- negative sparse coding, low-rank and sparse decomposi- tion [C]. In: International Conference on Computer Vision andPattern Recognition. Providence, USA, 2011.
  • 3Ji H, Huang S B, Shen Z W et al. Robust video restoration by joint sparse and low rank matrix approximation[J]. SlAM Journal on Imaging Sciences, 2011, 4(4): 1122- 1142.
  • 4Eckart C, Young G. The approximation of one matrix by another of lower rank[J]. Psychometrika, 1936, 1 (3) : 211- 218.
  • 5Jolliffe I T. Principal Component Analysis [M]. Springer- Verlag, New York, USA, 1986.
  • 6Wright J, Ganesh A, Rao Set al. Robust principal compo- nent analysis: Exact recovery of corrupted low-rank matri- ces via convex optimization[C]. In: Neural Information Processing Systems. Vancouver and Whistler, Canada, 2009.
  • 7Cand6s E J, Li X D, Ma Yet al. Robust principal compo- nent analysis? [J]. Journal of the ACM, 2011, 58 (3): 1-37.
  • 8Ganesh A, Wright J, Li X D et al. Dense error correction for low-rank matrices via principal component pursuit [C]. In: IEEE International Symposium on Information Theory. Austin, USA, 2010.
  • 9Xu H, Caramanis C, Sanghavi S. Robust PCA via outlier pursuit[J]. IEEE Transactions on Information Theory, 2012, 58 (5) : 3047-3064.
  • 10Toh K C, Yun S W. An accelerated proximal gradient algo- rithm for nuclear norm regularized least squares prob- lems [J]. Pacific Journal of Optimization, 2010, 6 (3) : 615- 640.

同被引文献122

  • 1高贵,蒋咏梅,张琦,匡纲要,李德仁.基于多特征联合的高分辨率SAR图像机动目标快速获取[J].电子学报,2006,34(9):1663-1667. 被引量:10
  • 2张敏,袁辉.拉依达(PauTa)准则与异常值剔除[J].郑州工业大学学报,1997,18(1):84-88. 被引量:138
  • 3Candes E J, Tao T. Robust uncertain typrincipless : exact signal reconstruction from highly incomplete frequency in- formation[J]. IEEE Transaction on Information Theory, 2006, 52(2) :489-509.
  • 4Candes E J, Tao T. Near optimal signal recovery from random projections : universal encoding strategy? [ J ]. IEEE Transaction on Information Theory, 2006, 52(12) : 5406-5425.
  • 5Candes E J, Tao T. Decoding by linear programming [ J ]. IEEE Transaction on Information Theory., 2005, 51 (12) : 4203-4215.
  • 6Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit [ J ]. IEEE Transactions on Information Theory, 2012, 58(2) : 1094-1121.
  • 7Gan H P, Li J, Li Z, et al. Bernoulli shift chaotic se- quence for compressed sensing [ J ]. Journal of Computa- tional Information Systems, 2014, 10(7) : 2761-2768.
  • 8Liu E, Temlyakov V. Orthogonal super greedy algorithm and applications in compressed sensing[ J]. IEEE Trans- action on Information Theory, 2012, 58(4) : 2040-2047.
  • 9Douoho D L. Compressed sensing[ J]. IEEE Transac- tions on Information Theory, 2006, 52(4) : 1289-1306.
  • 10Maleki A, Donoho D L. Optimally tuned iterative recon- strnction algorithms for compressed sensing [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4 (2) : 330-341.

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部