期刊文献+

锂离子电池负极材料铜锌锡硫纳米颗粒的制备及其电化学性能 被引量:1

Preparation and electrochemical performance of Cu_2ZnSnS_4 nanoparticles as anode materials for lithium ion battery
在线阅读 下载PDF
导出
摘要 以金属氯化物为金属源,硫脲为硫源,聚乙二醇和乙二醇为混合溶剂,采用溶剂热法一步合成了球形的铜锌锡硫纳米颗粒.利用X射线衍射仪(XRD),扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析了铜锌锡硫纳米颗粒的物相、结构、形貌;利用电池测试系统对以铜锌锡硫纳米颗粒为锂离子电池负极材料组装的锂离子电池的电化学性能进行了测试.结果表明:所得到的产物为具有锌黄锡矿结构的纯相铜锌锡硫,颗粒直径在300~500nm.铜锌锡硫纳米颗粒作为锂离子电池的负极材料具有较好的稳定性,有望在锂离子电池研究和应用中得到推广. Cu2ZnSnS4(CZTS)nanoparticles were successfully synthesized via simple solvothermal method by using metal chloride and thiourea as the precursors as well as polyethylene glycol and ethylene glycol as the solvents.The phase composition,structure and morphology of as-obtained CZTS nanoparticles were characterized by powder X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The electrochemical performance of CZTS nanoparticles as anode materials for lithium ion battery was evaluated with a Land battery testing system.Results show that as-obtained CZTS nanoparticles are pure kesterite-type CZTS with a diameter of 300-500nm.As anode materials for lithium ion battery,CZTS nanoparticles exhibit good long-term stability and excellent capacity retention property,showing potential application in lithium ion battery.
出处 《化学研究》 CAS 2013年第4期380-383,共4页 Chemical Research
基金 国家自然科学基金资助项目(21203053 21271064和U1204214)
关键词 锂离子电池 负极材料 铜锌锡硫 纳米颗粒 电化学性能 lithium ion battery anode material Cu2ZnSnS4(CZTS) nanoparticles electrochemical performance
  • 相关文献

参考文献14

  • 1ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451: 652-657.
  • 2ZHANG Wei Ming, HU Jin Song, GUO Yu Guo, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries[J]. Adv Mater, 2008, 20(6): 1160-1165.
  • 3WEN Zhen Hai, CUI Shu Mao, KIM H, et al. Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium-ion batteries[J]. J Mater Chem, 2012, 22(8): 3300-3306.
  • 4CHO J. Porous Si anode materials for lithium rechargeable batteries[J]. J Mater Chem, 2010, 20(20) : 4009-4014.
  • 5CHEN Xi Lin, GERASOPOULOS K, GUO Ju Chen, et al. High rate performance of virus enabled 3 D n-type Si anodes for lithium-ion batteries[J]. Electrochim Acta, 2011, 56(14): 5210-5213.
  • 6WANG Yu, XIA Hui, LU Li, et al. Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3 )0.0 (OH)0.11H20 nanobelt array and its conversion into mesoporous and single-crystal Co3 04 [J]. ACS Nano, 2010, 4(3): 1425-1432.
  • 7WANG Bao, WU Xing Long, SHU Chun Ying, et al. Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries[J]. J Mater Chem, 2010, 20(47) : 10661-10664.
  • 8LI Xi Fei, DHANABALAN A, BECHTOLD K, et al. Binder-free porous core shell structured Ni/NiO configuration for application of high performance lithium ion batteries[J]. Electroehem Commun, 2010, 12(9): 1222-1225.
  • 9WANG Jia Zhao, ZHONG Chao, WEXLER D, et al. Graphene-eneapsulated Fe3 04 nanopartieles with 3 D laminated structure as superior anode in lithium ion batteries[J]. Chem Eur J, 2011, 17(2): 661-667.
  • 10GAO Jie, LOWE M A, ABRUNA H D. Spongelike nanosized Mn3 04 as a high-capacity anode material for rechargeable lithium batteries[J]. Chem Mater, 2011, 23(13): 3223-3227.

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部