期刊文献+

基于伪谱展开的抛物型系统镇定与边界观测研究(英文)

Pseudospectral expansion-based model reduction for control and boundary observation of unstable parabolic partial differential equations
在线阅读 下载PDF
导出
摘要 模型截断设计方法在无限维系统控制中得到广泛的应用,但是其自身存在信息丢失的缺陷而限制了控制器对高频扰动抑制的性能.本文研究具有内部和Neumann边界控制的抛物型系统,其中系统采用边界测量.内部控制采用比例反馈形式,其中反馈增益核由Sturm-Liouville系统稳定性分析来待定;类似地,边界反馈的设计也采用待定反馈增益核的方式,最终对描述系统稳定性的Sturm-Liouville系统采用伪谱方法进行求解.数字仿真结果表明了该方法的有效性. The reduce-then-design approach is widely used for controller synthesis of infinite dimensional systems.A drawback of the reduce-then-design method is the inherent loss of information due to the truncation before control design.Moreover,the order of the model truncation is a trade-off between model accuracy and real time computation.The stabilization of an unstable linear parabolic partial differential equation(PDE) system with both Neumann boundary control and interior control is considered in this work.Point output measurement is available at one end of the physical domain.A proportional state feedback is proposed for the interior control with a symmetric kernel function,and the pseudospectral method is used to solve the stability conditions governed by the Sturm-Liouville systems.In addition,an observer is designed using the point measurement at one end of the physical domain,and used to propose an observer–based feedback controller for the PDE system.Both controller and observer gains are designed numerically to make the eigenvalues of the associated Sturm-Liouville problems stable.Simulations show the effectiveness of the proposed controller.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第7期793-800,共8页 Control Theory & Applications
基金 supported by the National Natural Science Foundation of China(No.F030119) the Natural Science Foundation of Zhejiang Province(Nos.Y1110354,Y6110751) the Natural Science Foundation of Ningbo(No.2010A610096)
关键词 截断再设计 设计再截断 伪谱展开 抛物型偏微分方程 reduce-then-design design-then-reduce pseudospectral expansion parabolic PDEs
  • 相关文献

参考文献2

二级参考文献24

  • 1Triggiani R.Boundary feedback stabilizability of parabolic equations.Applied Mathematics and Optimization,1980,6(1):201-220.
  • 2Kim J U,Renardy Y.Boundary control of the Timoshenko beam.SIAM Journal on Control and Optimization,1987,25(6):1417-1429.
  • 3Lasiecka I,Triggiani R.Control Theory for Partial Differ-ential Equations:Continuous and Approximation Theories.Cambridge:Cambridge University Press,2000.
  • 4Boskovic D M,Krstic M,Liu W J.Boundary control of an unstable heat equation via measurement of domain-averaged temperature.IEEE Transactions on Automatic Control,2001,46(12):2022-2028.
  • 5Liu W J.Boundary feedback stabilization of an unstable heat equation.SIAM Journal on Control and Optimization,2004,42 (3):1033-1043.
  • 6Smyshlyaev A,Krstic M.Closed-form boundary state feed-backs for a class of1-D partial integro-differential equations.IEEE Transactions on Automatic Control,2004,49(12):2185-2202.
  • 7Krstic M,Smyshlyaev A.Adaptive boundary control for un-stable parabolic PDEs-Part I:Lyapunov design.IEEE Trans-actions on Automatic Control,2008,53(7):1575-1591.
  • 8Smyshlyaev A,Krstic M.Adaptive boundary control for unstable parabolic PDEs-Part II:estimation-based designs.Automatica,2007,43(9):1543-1556.
  • 9Liu W J,Krstic M.Adaptive control of Burgers equation with unknown viscosity.International Journal of Adaptive Control and Signal Processing,2001,15(7):745-766.
  • 10Nguyen Q C,Hong K S.Asymptotic stabilization of a non-linear axially moving string by adaptive boundary control.Journal of Sound and Vibration,2010,329(22):4588-4603.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部