期刊文献+

结合二代小波与快速傅里叶变换的电能质量数据压缩算法 被引量:3

A Power Quality Data Compression Algorithm in Combination of Second Generation Wavelet Packets and Fast Fourier Transform
在线阅读 下载PDF
导出
摘要 针对大量电能质量数据的传输和储存问题,提出一种结合快速傅里叶变换(FFT)和二代小波(SGWT)的电能质量数据压缩算法,包括FFT、SGWT有损压缩和LZW(字符串表编码)无损压缩的流程图。分别对暂态和稳态扰动信号进行仿真比较,结果表明所提出的算法与FFT以及SGWT相比,可有效降低存储空间,可得到更高的压缩率且在压缩比、均方误差与运行时间等性能指标上取得较好平衡。 In order to deal with the very great amount of power quality data, combining SGWT (second generation wavelet transform) and FFT (fast Fourier transform), this paper proposes a new algorithm for power quality data compression, including the flowcharts of lossy compression with FFT and SGWT, and lossless compression with LZW (Lempel-Ziv-Welch). The simulations on the disturbing signals of transient and steady situations are carried out in comparison between the proposed algorithm and FFT as well as SGWT, and the results show that former is better to decrease the memory space and increase the compressed ratio as well as achieve satisfied balance among compressed ratio, root mean square error and execution time.
出处 《南方电网技术》 2013年第3期89-93,共5页 Southern Power System Technology
关键词 快速傅里叶变换 二代小波变换 字符串表编码 电能质量 数据压缩 FFT (fast Fourier transform) SGWT (second generation wavelet transform) LZW (Lempel-Ziv-Welch) compressed ratio root mean square error power quality data compression
  • 相关文献

参考文献4

二级参考文献14

共引文献37

同被引文献59

  • 1周国亮,宋亚奇,王桂兰,朱永利.状态监测大数据存储及聚类划分研究[J].电工技术学报,2013,28(S2):337-344. 被引量:41
  • 2沈跃.基于压缩感知理论的电力系统数据检测与压缩方法研究[D].江苏大学,2011(11).
  • 3ZHANG M, LI K CH, HU Y SH. A high efficient com- pression method for power quality applications [J]. IEEE Transactions on Instrumentation and Measurement,2011, 60(6) :1976-1985.
  • 4DONOHO D. Compressed sensing[ J]. IEEE Transactions on Information Theory, 2006,52 (4) : 1289-1306.
  • 5CANDES E, WAKIN M. B. An introduction to compres- sive sampling [ J ]. IEEE Signal Processing Magazine, 2008,25 (2) :21-30.
  • 6ROMBERG J. Imaging via compressive sampling [ J ]. IEEE Signal Processing Magazine ,2008,25 ( 2 ) : 14-20.
  • 7WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation [ J ]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence ,2009, 31 (2) :210-227.
  • 8SHEN Y, WU H X, LIU G/-I, et al. Study on identification of power quality disturbances based on compressive sens- ing[ C ]. Proceeding of the 11 th World Congress on Intel- ligent Control and Automation,2014:5550-5555.
  • 9DONOHO D L. For most large underdetermined systems of linear equations the minimal L1 norm solution is alsothe sparsest solution [ J ]. Communication on Pure and Ap- plied Mathematics ,2006,59 (6) :797-829.
  • 10MALLAT S, ZHANG Z. Matching pursuit with time-fre- quency dictionaries[ J]. IEEE Transactions on Signal Pro- cessing, 1993,41 (12) :3397-3415.

引证文献3

二级引证文献88

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部