期刊文献+

基于排序学习的微博用户推荐 被引量:15

Micro-blog User Recommendation Using Learning to Rank
在线阅读 下载PDF
导出
摘要 该文在分析总结影响微博用户推荐的四大类信息,包括用户的内容信息、个人信息、交互信息和社交拓扑信息的基础上,提出一个基于排序学习的微博用户推荐框架,排序学习的本质是用机器学习中的分类或回归方法解决排序问题,该框架可以综合各类信息特征进行用户推荐。实验结果表明:(1)融合多个特征综合推荐通常可以取得更好的推荐效果;(2)基于用户个人信息、交互信息、社交拓扑信息的推荐效果均好于基于用户内容的推荐效果。 This paper summarized four types of recommendation-related user information from micro-blog system: the user content(UC), the personal information(PI), the interaction(IA) and the social topological information (ST). Based on the four types of information, a user recommendation framework using learning-to-rank technology is built in the paper. Experiment results show: (1) using several features to recommend usually get a better result than using a single feature~ (2) recommendation performance based on UC, PI, IA respectively is better than that based on UC.
出处 《中文信息学报》 CSCD 北大核心 2013年第4期96-102,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(90920010 61100152) 网络文化与数字传播北京市重点实验室开放课题资助项目(5026035406) 核高基科技重大专项子课题资助项目(2010ZX01037-001-002-03)
关键词 排序学习 用户推荐 微博 learning to rank user recommendation micro-biog.
  • 相关文献

参考文献11

  • 1Zhou T, Ma H, Lyu , M. , King, 1. UserRec: A User Recommendation Framework in Social Tagging Sys?tems[CJ/ /Proceedings of the 24th AAAI Conference on Artificial Intelligence, 2010: 1486-1491.
  • 2Jilin Chen, Werner Geyer, Casey Dugan. Make new friends, but keep the old: recommending people on so?cial networking sites[CJI /Proceedings of CHIll: Proceedings of the 27th international conference on hu?man factors in computing systems ACM New York, 2009.
  • 3Hiroyuki Koga , Tadahiro Taniguchi. Developing a User Recommendation Engine on Twitter Using Esti?mated Latent Topics], CJ/ /Proceedings of HCI (1) 2011: 461-470.
  • 4Geyer W, Dugan C, Millen D, et al. Recommending topics for self-descriptions in online user profiles[CJ/ / Proceedings of RecSys08, 2008: 59-66.
  • 5Sinha R, Swearingen K. Comparing recommendations made by online systems and friends[CJ/ /Proceedings of DELOS- NSF Workshop on Personalization and Rec?ommender Systems in Digital Libraries. 2001.
  • 6Guy I, Zwerdling N, Carmel D, et al. Personalized recommendation of social software items based on so?cial relations[CJ/ /Proceedings of RecSys , 2009: 53- 60.
  • 7TY Liu. Learning to Rank for Information Retrieval[J]. Foundations and Trends in Information Retrieval, 2009.
  • 8K Dindia and D Canary. Definitions and Theoretical Perspectives on Maintaining Relationships.Journal of Social and Personal Relationships[J], 1993, 10 (2) : 163-173.
  • 9Malone T, Grant K, Turbak F, et al. Intelligent in?formation sharing systems]]]. Communications of the ACM , 1987, 30(5): 390-402.
  • 10J Hu, B Wang, Y Liu. Personalized Tag Recommen- dation Using Social Contacts[CJ/ /Proceedings of SRS VVorkshops. 2011.

同被引文献88

  • 1刘志勇,刘磊,刘萍萍,杨帆,贾冰.一种基于语义网的个性化学习资源推荐算法[J].吉林大学学报(工学版),2009,39(S2):391-395. 被引量:14
  • 2贺敏,王丽宏,杜攀,张瑾,程学旗.基于有意义串聚类的微博热点话题发现方法[J].通信学报,2013,34(S1):256-262. 被引量:12
  • 3Liu Jiahui, Dolan P, Pedersen E R, Personalized news recommendation based on click behavior [C] //Proc of the 15th Int Conf on Intelligent User Interfaces. New York: ACM. 2010: 31-44.
  • 4Lerman K. Social networks and social information filtering on digg [J]. journal IEEE Internet Computing Archive, 2007, 11(6): 16-28.
  • 5Sinha R R, Swearingen K. Comparing recommendations made hy online systems and friends [C]//Proc of the 2nd DELOS Network of Excellence Workshop on Personalisation and Recommender Systems in Digital I.ihraries. Dublin: Dublin City University, 2001.
  • 6Koren Y. The bellkor solution to the netflix grand prize [EB/OL]. 2009 [ 2013 -11-29]. http://www, netflixprize. corn/asset s/GrandPrize.2009 BPC_BellKor. pdf.
  • 7Chen Jilin, Nairn R, Cthi E. Speak little and welh Recommending conversations in online social streams [C]//Proc of the 2011 SIC-CttI C.onf on Human Factors in Computing Systems. New York: ACM, 2011:217-226.
  • 8Yan Rui, l.apata M, l.i Xiaoming. Tweet recommendation with graph co-ranking [C] //Proc of the 50th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA: ACI., 2012: 516-525.
  • 9Koga H, Taniguchi T. Developing a user recommendation engine on twitter using estimated latent topics [C] //Proe of the 14th Int Conf on Human Computer Interaction: Design and Development Approaches. New York:ACM, 2011: 461-470.
  • 10Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation [J]. The Journal of Machine l.earning Research, 200a, 3(4/ 5) : 993-1022.

引证文献15

二级引证文献174

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部