期刊文献+

支持向量机和水平集的高分辨率遥感图像河流检测 被引量:8

Using support vector machine and level set for river detection in high resolution remote sensing image
原文传递
导出
摘要 河流是重要的地理结构特征,对河流进行检测识别研究,在军事上和民用上都具有十分重要的意义。提出了一种基于支持向量机(SVM)和水平集的高分辨率遥感图像河流检测算法。首先根据高分辨率遥感图像河流目标的特点,采用样本图像的纹理特征和基准点信息扩散特征构造特征向量,并基于样本训练支持向量机分类器实现河流目标的粗分割;然后以粗分割结果为基础,采用距离正则化水平集演化(DRLSE)模型提取河流的精确轮廓,获得完整的河流区域。以1 m分辨率的IKONOS图像进行实验验证,结果表明本文算法准确性高,灵活性强,可以在复杂背景下准确地检测河流目标区域,在实践中具有广泛适用性。 River detection in high resolution remote sensing images is one of the most popular topics of research in compu- ter vision. In this paper, a novel river detection algorithm in high-resolution remote sensing images by using support vector machine (SVM) and level set is proposed. According to the characteristic of the river, we employ texture feature and benchmark information diffusion feature as the feature vectors to train the support vector machine classifiers in order to per- form the coarse segmentation of rivers. Then the distance regularized level set evolution (DRLSE) model, which takes the results of the coarse segmentation as the initial curves, is used to capture the desirable shapes of the rivers. Experiments are executed on IKONOS 1 m-resolution images and the results demonstrate the superior performance of the proposed algo- rithm in terms of accuracy, efficiency, and robustness.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第6期677-684,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61005032)
关键词 支持向量机 水平集 基准点信息扩散 河流检测 support vector machine level set benchmark information diffusion river detection
  • 相关文献

参考文献14

  • 1Trias-Sanz R, Lomenie N, Barbeau J. Using textual and geome- tric information for an automatic bridge detection system [ C ]// Procedings of Advanced Concepts for Intelligent Vision System. Brussels, Belgium: IEEE, 2004: 325-332.
  • 2吴樊,王超,张红,张波,张维胜.基于知识的中高分辨率光学卫星遥感影像桥梁目标识别研究[J].电子与信息学报,2006,28(4):587-591. 被引量:32
  • 3何智勇,章孝灿,黄智才,蒋亨显.一种高分辨率遥感影像水体提取技术[J].浙江大学学报(理学版),2004,31(6):701-707. 被引量:36
  • 4陈生,王宏,沈占锋,骆剑承,胡晓东,刘雯.面向对象的高分辨率遥感影像桥梁提取研究[J].中国图象图形学报,2009,14(4):585-590. 被引量:22
  • 5胡正磊,孙进平,袁运能,毛士艺.基于小波边缘提取和脊线跟踪技术的SAR图像河流检测算法[J].电子与信息学报,2007,29(3):524-527. 被引量:16
  • 6Sun J P, Mao S Y. River detection algorithm in SAR images based on edge extraction and ridge tracing techniques [ J]. Inlet- national Journal of Remote Sensing, 2011,32(12) : 3485-3494.
  • 7Niedermeier A, Romaneeben E, I,ehner S. Deteetion of coast- lines in SAR images using wavelet vnelhods[ J ]. IEEE Transac- tions on Geoscience and Remote Sensing, 2000, 38 (5) : 2270- 2281.
  • 8Chang T, Kuo C C J. Texture analysis and classification wilh tree structured wavelet transtorm [ J]. IEEE Transactions on Image Processing, 1993, 3 (4) : 429-.441.
  • 9Zhang L, Zhang L, Zhang D. A multi-scale bilateral slructurc tensor based corner delector [ C ]//Proceedings of Asian Con-ference on Compuler Vision. Xi'an, China: Springer, 2(X)9 : 618-627.
  • 10Caselles V, Kimmel R, Sapil'o G. Geodesic" active contours[ J ]. International Journal of Computer Vision, 1997, 22( 1 ) : 61-79.

二级参考文献32

共引文献97

同被引文献92

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部