期刊文献+

锇在磷酸体系抛光液中化学机械抛光研究 被引量:3

Chemical Mechanical Polishing of Os in H_3PO_4-Based Slurries
原文传递
导出
摘要 (锇有可能作为大规模集成电路铜互连扩散阻挡层新材料。)利用自制的抛光液对金属锇片进行抛光,研究在双氧水-磷酸体系抛光液中H2O2浓度和抛光液pH值对抛光速率的影响。结果表明,当抛光液中主要成分仅为氧化剂H2O2时,并不能在金属锇表面达到好的腐蚀效果。在磷酸体系抛光液中,H2O2能够通过促进阴极反应的进行从而增强抛光液对金属锇的化学作用;低浓度H2O2通过增强抛光液对金属锇的化学腐蚀能力,从而增加了抛光速率值;较高浓度H2O2的加入对抛光速率值影响较小。H3PO4能够在抛光液中起到抑制剂、pH调节剂和络合剂的作用。当抛光液pH值为4.0时,金属锇表面生成的钝化膜最致密。当pH值为4.0或5.0时,金属锇表面生成的钝化膜OCP值大于金属锇的OCP值,且此条件下的抛光速率值较高。 Osmium (Os) may be used in copper interconnects of ultra-large scale integration as a new barrier material. In this work, chemical mechanical polishing experiments were performed on Os disk using home-made H3PO4-based slurries and the effect of the H2O2 concentration and pH value on the material removal rate (MRR) was investigated. Good corrosion cannot be obtained on Os surface when only H2O2 is the main components in slurry. In H3PO4-based slurries, H2O2 can accelerate the cathode reaction and enhance the chemical action of the slurry on the surface of Os. Low concentration H2O2 promotes the chemical corrosion ability to corrode Os surface and increases the material removal rate; the increasing of H2O2 concentration has less influences on the MRR when the concentration of H2O2 is higher. Phosphoric acid plays a role of inhibitor, pH adjusting agent and complexing agent in the slurry. When pH value is 4.0, the passive film on the surface of Os is most compact. The OCP values of the passive films formed on the surface of Os are higher than those of Os and the MRR attains higher values when the pH value is 4.0 or 5.0
机构地区 安徽工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第8期1669-1673,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50975002)
关键词 化学机械抛光 磷酸 极化曲线 阻挡层材料 chemical mechanical polishing osmium phosphoric acid polarization curve barrier layer material
  • 相关文献

参考文献11

  • 1Josell D, Bonevich J E, Moffat T Pet al. Electrochemical and Solid-State Letters[J], 2006, 92: 48.
  • 2Moffat T P, Walker M, Chen P J et al. J Electrochem Soc[J], 2006, 1531: 37.
  • 3Lane M W, Murray C E, McFeely F R et al. Applied Physics Letters[J], 2003, 8312: 2330.
  • 4Josell D, Witt C, Moffat T P. Electrochemical and Solid-State Letters[J], 2006, 92: 41.
  • 5Leea W J, Park H S. Applied Surface Science [J], 2004, 228: 410.
  • 6Kim I K, Kang Y J, Kwon T Y et al. Electrochemical and Solid-State Letters[J], 2008, 116: 150.
  • 7Kim I K, Cho B G, Park J G. Journal of the Electrochemical Society[J], 2009, 1563: 188.
  • 8Chen Y H, Tsai T H, Yen S C. Microelectronic Engineering[J], 2010, 87:174.
  • 9Du Tianbao, Vijayakumar A, Desai V. Electrochimica Acta[J], 2004, 49:4505.
  • 10Zheng J P, Roy D. Thin SolidFilms[J], 2009, 517:4587.

同被引文献22

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部