期刊文献+

层次结构定量数据组内相关系数的非参数Bootstrap估计 被引量:1

Non-parametric Bootstrap estimation on the intraclass correlation coefficient generated from quantitative hierarchical data
原文传递
导出
摘要 【导读】探讨Bootstrap自抽样如何在层次结构数据中实现,为组内相关系数(ice)可信区间的计算方法提供选择。文中利用混合效应模型估计重复测量数据和两阶段抽样数据的ICC及利用Bootstrap法估计ICC的可信区间,比较不同的自抽样模式下ICC可信区间结果。重复测量实例结果显示Bootstrap整群抽样估计的可信区间包含ICC真值,如忽视数据的层次结构特征,Bootstrap方法得到无效的可信区间估计;两阶段抽样实例结果显示整群Bootstrap自抽样方法估计的ICC均数与原样本ICC偏差最小,可信区间宽泛。表明对层次结构数据进行Bootstrap自抽样,需考虑数据的产生机制,即高水平Bootstrap自抽样的统计量估计更接近原样本统计量。 [Introduction] This paper aims to achieve Bootstraping in hierarchical data and to provide a method for the estimation on confidence interval (CI) of intraclass correlation coefficient (ICC).First, we utilize the mixed-effects model to estimate data from ICC of repeated measurement and from the two-stage sampling. Then, we use Bootstrap method to estimate CI from related ICCs. Finally, the influences of different Bootstraping strategies to ICC' s CIs are compared. The repeated measurement instance show that the CI of cluster Bootsraping containing the true ICC value. However, when ignoring the hierarchy characteristics of data, the random Bootsraping method shows that it has the invalid CI. Result from the two-stage instance shows that bias obsered between cluster Bootstraping' s ICC means while the ICC of the original sample is the smallest, but with wide CI. It is necessary to consider the structure of data as important, when hierarchical data is being resampled. Bootstrapping seems to be better on the higher than that on lower levels.
出处 《中华流行病学杂志》 CAS CSCD 北大核心 2013年第9期927-930,共4页 Chinese Journal of Epidemiology
基金 广东省自然科学基金(10151022401000018)
关键词 层次结构数据 组内相关系数 可信区间 Bootstrap自抽样 Hierarchical data Intraclass correlation coefficient Confidence interval Bootstrapping
  • 相关文献

参考文献11

  • 1Efron B. Bootstrap methods: another look at the jackknife. Ann Star, 1979,7( 1 ) : 1-26.
  • 2SAS Institute Inc. 2009. SAS/STAT 9.2 User's Guide, 2^nded. Cary,NC: SAS Institute Inc [EB/OL].
  • 3Johnson RW. An introduction to the bootstrap. Teach Stat,2001,23(2):49-54.
  • 4Ukoumunne OC, Davison AC, Gulliford MC, et al. Non-parametric bootstrap confidence intervals for the intraclass correlation coefficient. Star Med, 2003,22 (24) : 3805-3821.
  • 5Ip EH, Wasserman R, Barkin S. Comparison of intraclass correlation coefficient estimates and standard errors between using cross-sectional and repeated measurement data: the safety check cluster randomized trial. Contemp Clin Trials, 2011, 32 (2) : 225-232.
  • 6Thompson DM, Femald DH, Mold JW. Intraclass correlation coefficients typical of cluster-randomized studies:estimates from the Robert Wood Johnson Prescription for Health projects. Ann Faro Meal,2012,10(3) :235-240.
  • 7Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Star Sci, 1986,1 (1) : 54-75.
  • 8Xiao YH, Liu JW, Bhandary M. Resampling approaches for common intraclass correlation coefficients. J Star Comput Simul, 2012,82(9) : 1357-1366.
  • 9Field CA, Welsh AH. Bootstrapping clustered data. J R Stat Soc Series B Stat Methodol, 2007,69 (3) : 369-390.
  • 10Ren SQ, Yang SQ, Lai SH. Intraclass correlation coefficients and bootstrap methods of hierarchical binary outcomes. Stat Med, 2006,25(20) :3576-3588.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部