期刊文献+

众包质量控制策略及评估算法研究 被引量:60

Research on Crowdsourcing Quality Control Strategies and Evaluation Algorithm
在线阅读 下载PDF
导出
摘要 随着Internet技术的快速发展,众包作为一种灵活有效的解决问题方式,开始受到人们越来越多的关注.由于众包的自由松散组织模式,使得如何有效地控制任务完成质量,并将欺骗类型工作者识别出来,成为目前众包研究中一个急需解决的问题.文中基于对众包工作者提交结果的评估与分析,提出了一种阶段式的动态质量控制策略,同时给出了一个组合式众包结果质量评估方法框架.经过实际数据的测试,文中提出的质量控制策略和众包结果质量评估方法具有较好的效果. With the rapid development of Internet technology,crowdsourcing service as a flexible and effective solution,more and more people begin to be concerned about the matter.Crowdsourcing applications generate complex background for online network trading platform,and quality control is the key of crowdsourcing applications.So how to effectively improve the quality of task and identify malicious workers is becoming a hot topic in research community.We try to judge the worker whether good enough by evaluating their answer for the task.This paper proposes a new crowdsourcing quality assessment model.The real experiment results shown that the method could achieve good performance.
出处 《计算机学报》 EI CSCD 北大核心 2013年第8期1636-1649,共14页 Chinese Journal of Computers
基金 国家自然科学基金(60803037 61202090 61272184) 教育部新世纪人才支持计划(NCET-11-0829) 黑龙江省自然科学基金(F201130 F201016) 哈尔滨市科技创新人才研究专项基金(RC2010Q010024) 中央高校基本科研业务费专项资金(HEUCF100609 HEUCFT1202)资助~~
关键词 众包服务 分阶段质量控制 检测点 评估算法 crowdsourcing service multi-phase quality control checkpoint evaluating algorithm
  • 相关文献

参考文献23

  • 1Howe Jeff. The rise of crowdsourcing. Wired, 2006, 14(6) : 176-183.
  • 2Callison-Burch C. Fast, cheap, and creative: Evaluating translation quality using Amazon- s mechanical turk//Pro- ceedings of of the Conference on Empirical Methods in Natu- ral Language Processing. Singapore, 2009: 286-295.
  • 3Yan Tingxin, Kumar V, Ganesan D. CrowdSearch: Exploi ting crowds for accurate real-time image search on mobile phones//Proeeedings of the International Conference on Mo- bile Systems, Applications, and Services. San Francisco, USA, 2010:77-90.
  • 4Alonso O, Rose D E, Stewart B. Crowdsoureing for rele- vance evaluation. Journal of SIGIR Forum (SIGIR), 2008, 42(2) : 9-15.
  • 5Alonso O, Mizzaro S. Can we get rid of TREC assessors? Using mechanical turk for relevance assessment//Proceedings of the SIGIR Workshop on the Future of IR Evaluation. Boston, Massachusetts, USA, 2009:15-16.
  • 6Lease M, Carvalho V R, Yilmaz E. Crowdsoureing for search and data mining. Journal of SIGIR Forum (SIGIR), 2011, 45(1): 18-24.
  • 7Kamath K Y, Caverlee J. Transient crowd discovery on the real-time social Web//Proceedings of the WSDM. Hong Kong, China, 2011:585-594.
  • 8Castillo C, Mendoza M, Poblete B. Information credibility on twitter//Proceedings of the WWW. Hyderabad, India, 2011:675-684.
  • 9Bigham J P, Jayant C, Ji H, et al. VizWiz: Nearly real-time answers to visual questions//Proceedings of the 13IST. New York City, USA, 2010. 333-342.
  • 10Hofmann T, Puzicha J. Statistical models for co-occurrence data. Massachusetts Institute of Technology Artificial Intelli- gence Laboratory, Massachusetts State of USA: Technical Report AIM- 1625, CBCL-159, 1998.

同被引文献535

引证文献60

二级引证文献359

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部