期刊文献+

粒子滤波在锂离子电池剩余寿命预测中的应用 被引量:20

Remaining useful life prediction of the lithium-ion battery using particle filtering
在线阅读 下载PDF
导出
摘要 为有效预测锂离子电池剩余寿命,引入了粒子滤波算法。对粒子滤波的基本概念和算法实现步骤进行介绍,在给出锂离子电池寿命统计数据的基础上,应用粒子滤波算法计算其剩余寿命,解决了锂离子电池剩余寿命预测的问题。对相同的锂离子电池统计数据,利用扩展卡尔曼滤波方法计算进行对比实验。分析结果表明:粒子滤波算法比扩展卡尔曼滤波算法可靠,能较好地预测出锂离子电池的剩余寿命,误差小于5%。 A particle filtering algorithm for predicting the remaining useful life of the lithium-ion battery is presented. First, the concepts and steps of the proposed method are introduced. Then, the particle filtering based method is used to predict the remaining useful life of the lithium-ion battery with experimental data. Comparison study with the extended Kalman filtering based prediction technique is conducted to evaluate the performance of the particle filtering algorithm. The results show that the particle filtering algorithm is more accurate and can predict the actual failure time with an error less than 5 %.
出处 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第8期47-52,60,共7页 Journal of Chongqing University
基金 国家自然科学基金资助项目(51275554 50905028) 教育部新世纪优秀人才支持计划资助项目(NCET-0063)
关键词 锂离子电池 粒子滤波 剩余寿命 扩展卡尔曼滤波 lithium-ion battery particle filtering remaining life extended Kalman filtering
  • 相关文献

参考文献17

  • 1胡益民,冯冠平,刘岩.基于阻抗谱技术的蓄电池荷电状态的估测[J].电工技术学报,2009,24(5):225-228. 被引量:10
  • 2李革臣,江海,王海英.基于模糊神经网络的电池剩余电量计算模型[J].测试技术学报,2007,21(5):405-409. 被引量:13
  • 3彭志远,杨亚联,秦大同,刘永刚.一种估计混合动力用Ni-MH电池单体SOC的方法[J].重庆大学学报(自然科学版),2011,34(5):19-25. 被引量:4
  • 4熊茜,陈启宏,全睿.基于神经网络专家系统的燃料电池发动机故障诊断系统设计[J].仪表技术,2010(4):31-34. 被引量:4
  • 5Saha B, Goebel K, ChristophersenJ. Comarison of prognostic algorithms for estimating remaining useful life of batteries[J]. Transactions of the Institute of Measurement and Control,2009,31(3/4) :293-308.
  • 6Saha B,Goebel K,Poll Ss et al. Prognostics methods for battery health monitoring using a Bayesian framework[J]' IEEE Transactions on Instrumentation and Measurement, 2009 , 58(2) : 291-296.
  • 7Xing YJ, Williard N, Tsui K L, et al. A comparative review of prognostics-based reliability methods for lithium batteries[CJ II Proceedings of the 20ll Prognostics &. System Health Management Conference, May 24-25, 20ll, Shenzhen , China. Piscataway: IEEE Press, zcn , 1-6.
  • 8Rouet V, Minault F, Diancourt G, et al. Concept of smart integrated life consumption monitoring system for electronics[J]. Microelectronics Reliability, 2007, 47(12):1921-1927.
  • 9Bhangu B, Bentley P, Stone D A, et al. Nonlinear observers for predicting state-of-charge and state-of?health of lead-acid batteries for hybrid-electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2005,54(3):783-794.
  • 10Edwards D, Orchard M E, Tang L, et al. Impact of input uncertainty on failure prognostics algorithms: extending the remaining useful life of nonlinear system[C/OLJ II Annual Conference of the Prognostics and Health Management Society, Portland, Oregaon , USA, October 10-14,2010.[20ll-06-30]. http: II icsl. gatech. edu/aa/images/l/ld/Derek_PHM_2010. pdf.

二级参考文献93

共引文献102

同被引文献100

引证文献20

二级引证文献123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部