期刊文献+

基于粒子群算法的多级低压涡轮一维气动优化设计方法 被引量:9

An Optimal Method of One-Dimensional Design for Multistage Low Pressure Turbines Based on Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 为探究涡轮高效设计技术,从低维优化层面出发,提出了一种基于粒子群优化算法的多级低压涡轮一维设计和优化方法。该方法以涡轮效率为目标,通过建立涡轮子午流道形式以及气动特性等约束条件将涡轮一维设计转化成包含约束限制的极大值优化问题。在验证粒子群算法优化性能的基础上发展了多级低压涡轮一维气动优化设计程序,该程序通过优化地选取涡轮各级的多个设计变量,有效地生成满足多个约束条件的级最佳速度三角形以及最佳初步子午流道形式。利用该程序完成了原型低压涡轮的优化改型工作,三维数值模拟结果表明,优化改型方案在设计点和非设计点的气动性能均获得了不同程度的改善。 In order to explore an efficient designing technique for turbines, a method of one-dimension- al design for multistage low pressure turbines was presented, from the view of low dimensional optimization. Based on the particle swarm optimization(PSO) theory,the method transfers the one-dimensional design into constrained maximum optimization by taking the efficiency of the turbine as objective and a series of func- tions concerning the meridional channel and aerodynamic characteristics as constraints. The PSO was veri- fied effectively based on which a program for optimized design of multistage low pressure turbines was devel- oped. By selecting some design parameters of each turbine stage optimally, this program can generate an optimized velocity triangle of each stage and a preliminary meridional channel that satisfies the constraint conditions effectively. Furthermore, an improvement design of an original low pressure turbine was accom- plished using the program. Based on the three dimensional simulation, this optimized scheme improves the performance to varying degrees in terms of design point and off-design point.
出处 《推进技术》 EI CAS CSCD 北大核心 2013年第8期1042-1049,共8页 Journal of Propulsion Technology
关键词 低维优化 多级低压涡轮 一维设计 子午流道 粒子群优化算法 改型设计 气动性能 Low dimensional optimization Multistage low pressure turbines One-dimensional design Meridional channel Particle swarm optimization Improvement design Aerodynamic performance
  • 相关文献

参考文献12

  • 1张伟昊,邹正平,刘火星,李维.小型涡扇发动机涡轮气动设计研究[J].航空动力学报,2010,25(1):72-79. 被引量:7
  • 2胡岩松.大飞机发动机多级低压涡轮设计技术分析[C].深圳:大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集,2007.
  • 3杨金广,吴虎,杨鹏,毛凯.基于二维优化方法的涡轮过渡流道设计[J].推进技术,2013,34(2):161-167. 被引量:9
  • 4Petrovic M V, Dulikravich G S, Martin T J. Maximizing Multistage Turbine Efficiency by Optimizing Hub and Shroud Shapes and Inlet and Exit Condition of Each Blade Row[J]. International Journal of Turbo and Jet Engine, 2000, 17(4) : 267-278.
  • 5Qin Xiao-yong, Chen Li-gen, Sun Feng-rui, et al. Opti- mization for a Stream Turbine Stage Efficiency Using a Genetic Algorithm [J]. Applied Thermal Engineering, 2003, 23 : 2307-2316.
  • 6赵洪雷,王松涛,韩万金,冯国泰.多级涡轮三维气动优化设计的可行性分析与实现[J].热能动力工程,2008,23(1):11-15. 被引量:9
  • 7Kennedy J, Eberhart R. Particle Swarm Optimization [ J]. USA:IEEE International Conference on Neural Net- works, 1995, 4: 1942-1948.
  • 8Kennedy J, Eberhart R. A Modified Particle Swarm Opti- mizer[ C ]. Alaska : IEEE International Conference of Ev- olutionary Computation, 1998.
  • 9胡乃平,宋世芳.一种局部与全局相结合的微粒群优化算法[J].计算机工程,2008,34(17):205-207. 被引量:8
  • 10Kennedy J. Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm Performance [ A ]. Proceedings of IEEE Congress on Evolutionary Computation[ C]. Piscataway, N J: IEEE Service Center, 1999: 1931-1938.

二级参考文献36

共引文献29

同被引文献65

引证文献9

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部