期刊文献+

AZ31镁合金微弧氧化涂层在仿生液中的腐蚀抑制机理 被引量:2

Corrosion Inhibition Mechanism of Microarc Oxidized AZ31 Magnesium Alloy in Simulated Body Fluid
原文传递
导出
摘要 研究了浸泡时间对镁合金微弧氧化涂层耐蚀性的影响并建立了耐腐蚀机理模型。涂层样品在仿生液中总浸泡28 d。采用扫描电镜,X射线衍射仪分析了膜层腐蚀前后的微观组织结构和相组成。通过动电位极化曲线和电化学阻抗谱测试研究膜层的电化学行为。经28 d腐蚀后的样品表面生成了完整的腐蚀产物层。X荧光能谱显示腐蚀层Ca/P摩尔比接近1.67,表明腐蚀表面沉积出的羟基磷灰石具有良好生物兼容性和生物活性。腐蚀产物层的形成减小了样品的腐蚀速率,耐蚀性显著提高。 The effect of immersion time on corrosion behavior of microarc-oxidized AZ31 Mg alloy in a simulated body fluid was studied. The microarc oxidation was performed in an electrolyte of 30 g/L sodium phosphate (Na3PO4) at a voltage of 250 V and a pulse frequence of 3000 Hz for 5 min. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to characterize the corrosion behavior. The corrosion current density increases during the first 14 days and then decreases in the subsequent days. The electrochemical impedance is in accord with the result of the corrosion current density. The characterization of corrosion products revealed that hydroxyapatite (HA) was formed on the surface of the samples. The ratio Ca/P of the corrosion products was determined by the X-ray fluorescence (XRF) technique, and the value is around 1.67. The corrosion resistance of the microarc oxidized samples is enhanced due to the formation of a corrosion product after immersion in simulated body fluid for more than 14 days. The corrosion inhibition mechanism of the corrosion process is discussed and presented with a physical model.
出处 《腐蚀科学与防护技术》 CAS CSCD 北大核心 2013年第5期365-371,共7页 Corrosion Science and Protection Technology
基金 国家重点基础研究发展计划项目(2012CB619100) 国家自然科学基金项目(51072057)资助
关键词 镁合金 浸泡时间 微弧氧化 腐蚀抑制 仿生液 magnesium alloy, immersion time, microarc oxidation, corrosion inhibition, simulated body fluid
  • 相关文献

参考文献7

二级参考文献72

共引文献72

同被引文献30

  • 1汤京龙,奚廷斐.纳米银生物安全性研究[J].生物医学工程学杂志,2008,25(4):958-961. 被引量:19
  • 2任伊宾,黄晶晶,杨柯,张炳春,姚治铭,王浩.纯镁的生物腐蚀研究[J].金属学报,2005,41(11):1228-1232. 被引量:56
  • 3王书杰,张宇.银离子消毒剂的杀菌作用、机制、影响因素及应用[J].中国感染控制杂志,2007,6(3):214-216. 被引量:31
  • 4N IU W,BAI C,QIU G B,et al.Processing and properties of porous titanium using space holder technique[J].Materials Science and Engineering A,2009,506(1-2): 148-151.
  • 5GAO J H,GUAN S K,CHEN J,et al.Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca Alloy[J].Applied Surface Science,2011,257(6): 2231-2237.
  • 6RAMIN ROJAEE,MOHAMMADHOSSEIN FATHI,KEYVAN RAEISSI.Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments[J].Applied Surface Science,2013(285): 664-673.
  • 7RAMIN ROJACE,MOHAMMADHOSSEIN FATHI,KEYVAN RAEISSI.Controlling the degradation rate of AZ91 magnesium alloy via sol-gel derived nanostructured hydroxyapatite coating[J]. Materials Science and Engineering C,2013(33): 3817-3825.
  • 8AI- Abdullat Y, Tsutsumi S, Nakajima N, et al Surface modification of magnesiunl by NaHCO3 and for- rosion behavior in Hank's solution for new biomaterial application [ J ]. Material Transactions, 2001. 42 (8) : 1777.
  • 9Tang Hui, Yu Dezhen, l.uo Yah, el al. Preparalion and characterizatitm of HA microflowers coating on AZ31 magnesium all,-Lv by micro-arc oxidation and a soluliontreatment[J]. Applied Surface Science, 2013, 264: 816 - 822.
  • 10Fischerauera S F, Krausc T, Wu X, et al. In vivo deg- radation performance of micro - are oxidized magnesium implants: a micro - CT study in rats[ J]. Acta Biomate- rialia, 2013, 9(2) ~ 54ll - 5420.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部