期刊文献+

返回扩张不动点与瞬态混沌神经网络中的混沌研究

Snap-back Repeller and Chaos in Transiently Chaotic Neural Network
在线阅读 下载PDF
导出
摘要 证明了返回扩张不动点可以生成分布混沌和ω-混沌。作为一个应用,证明了如果满足一定条件,一个瞬态混沌神经网络(TCNN)可以产生分布混沌和ω-混沌。 In this paper, we prove that a dynamical system with a snap - back repeller can gen- erate distributional chaos and co - chaos. As an application of this result, we investigate chaos in the transiently chaotic neural network (TCNN), which is a useful system for combinatorial opti- mization, we show that if some conditions are satisfied, a transiently chaotic neural network (TCNN) can be distributional chaotic and -chaotic.
作者 王立冬 王辉
出处 《大连民族学院学报》 CAS 2013年第5期512-515,共4页 Journal of Dalian Nationalities University
基金 国家自然科学基金项目(11971245 11271061) 中央高校基本科研业务费专项资金资助项目(DC12010111)
关键词 返回扩张不动点 瞬态混沌神经网络 分布混沌 ω-混沌 snap- back repeller transiently chaotic neural network distributional chaos co -chaos
  • 相关文献

参考文献19

  • 1LIT Y,YORKE J A. Period three implieschaos [ J ]. A- mer. Math. Monthly, 1975,82: 985-992.
  • 2MAROTrO F R. Snap -back repellers imply chaos in Rn[J].J. Math. Anal. Appl., 1978,63: 199-223.
  • 3SHI Y M, YU P. Chaos induced by regular snap - back repellers[J]. J. Math. Anal. Appl. ,2008,337:1480 - 1494.
  • 4Sill Y M, CHEN G R. Chaos of discrete dynamical sys- tems in complete metric spaces [ J ]. Chaos, Solitons and Fractals, 2004,22 : 555 - 571.
  • 5CHEN L, AIHARA K. Transient chaotic neural networks and chaotic simulated annealing [ J ]. Towards the Har-nessing of Chaos, ed. M. Yamaguti ( Elsevier, Amster- dam, ) 1994, 347 - 352.
  • 6CHEN L, AIHARA K. Chaotic simulated annealing for combinatorial optimization [ J ]. Dynamic Systems and Chaos, ed. Aokiet al. (World Scientific, Singapore) , 1995,1:319 - 322.
  • 7CHEN L, AIHARA K. Chaos and asymptotical stability in discrete - time neural networks [ J ], Phys. D, 1997, 104 : 286 - 325.
  • 8CHEN S S, SHIH C W. Transversal homoclinic orbits in a transiently chaotic neural network [ J ]. Chaos, 2002, 12:654-671.
  • 9LIAO K L, SHIH C W. Snapback repellers and homo- clinic orbits for multi - dimensional maps [ J ]. J. Math. Anal. Appl. , 2012,386:387-400.
  • 10SCHWEIZER B, SMITAL J. Measure of chaos and a spectral decomposition of dynamical systems of interval [J]. Trans. Amer. Math. Soc., 1994,344: 737- 754.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部