期刊文献+

高雷诺数方腔流动的分子模拟 被引量:1

MOLECULAR SIMULATION OF DRIVEN CAVITY FLOWS WITH HIGH REYNOLDS NUMBER
在线阅读 下载PDF
导出
摘要 采用扩散信息保存(diffusive information preservation,D—IP)方法计算了雷诺数为10^2-10^4的二维方腔流动.D—IP方法是一种基于扩散运动观点的分子模拟方法,克服了经典直接模拟蒙特卡罗方法对于时间步长和网格大小的严格限制.在计算中,D—IP方法的时间步长和网格大小分别为分子平均碰撞时间和平均自由程的几十倍乃至几百倍,所得到的方腔流线分布和旋涡的精细结构,均与Navier-Stokes方程数值解相符. Cavity flow is simulated using the diffusive information preservation (D-IP) method. The D-IP method is a molecular simulation scheme based on a viewpoint of molecular diffusion, and it greatly releases the time step and cell size limitations of the DSMC method that become too strict to meet as the Reynolds number increases. The Reynolds number in the present calculations ranges from 102 to 104, while the time step and cell size of D-IP are tens of times or even hundreds of times more than the molecular mean collision time and mean free path, respectively. The stream-wise distributions, as well as the fine structures of vortices, obtained by the D-IP method, are compared with the numerical solutions of the Navier-Stokes equations and found to be in good agreement.
作者 费飞 樊菁
出处 《力学学报》 EI CSCD 北大核心 2013年第5期653-659,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10921062)~~
关键词 方腔流动 扩散信息保存方法 DSMC方法 时间步长 网格大小 cavity flow, D-IP, DSMC, time step, cell size
  • 相关文献

参考文献23

  • 1Bird GA. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994.
  • 2Bird GA. The initiation of centrifugal instabilities in an axially sym- metric flow. In: Shen C, ed., Prof. of 20th Intemational Symposium on Rarefied Gas Dynamics, Peking Univ. Press, Beijing, 1997. 149- 154.
  • 3Bird GA. Recent advances and current challenges for DSMC. Com- puter Math. Applic, 1998, 35:1-14.
  • 4Alder BJ. Reflections on the Boltzmann equation. In: Bartel TJ, Gallis MA, eds. Proc. of 22th International Symposium on Rarefied Gas Dynamics, AIP Conference Proceedings, 2001. 1-3.
  • 5Weisgraber TH, Alder BJ. Computer experiments on the onset of turbulence. In: Mareschal M, et al. eds. Proc. of 28th International Symposium on Rarefied Gas Dynamics, AlP Conference Proceed- ings 1501, 2012. 30-33.
  • 6Zhang J, Fan J. Information preservation modelling of Rayleigh- B6nard transition from thermal conduction to convection., In: Abe T. ed., Proc. of 26th International Symposium on Rarefied Gas Dy- namics, AIP Conference Proceedings 1084, 2009. 359-364.
  • 7Zhang J, Fan J. Monte Carlo simulation of thermal fluctuations be- low the onset of Rayleigh-BEnard convection. Physical Review E, 2009, 79:056302.
  • 8Zhang J, Fan J. Effects of convection and solid wall on the diffusion in microscale convection flows. Phys. Fluids, 2010, 22:122005.
  • 9Alexander FJ, Garcia AL, Alder BJ. Cell size dependence of trans- port coefficients in stochastic particle algorithms. Phys Fluids, 1998, 10:1540.
  • 10Hadjiconstantinou NG. Analysis of discretization in the direct sim- ulation Monte Carlo method. Phys Fluids, 2000, 12:2634-2638.

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部