期刊文献+

基于PSpice的TL494宏模型的研究 被引量:1

Research on the Macro-model of TL494 Based on PSpice
在线阅读 下载PDF
导出
摘要 提出了基于开关电源集成控制器PSpice的开关电源集成控制器TL494的宏模型。由于它包含有开关电源控制所需的全部功能,广泛应用于单端正激、半桥式、全桥式开关电源,所以研究它的PSpice仿真模型对控制芯片的设计分析有重要的意义。首先给出TL494的内部结构和工作原理。对TL494各个功能模块建立了PSpice宏模型电路,再将各个功能模块封装起来,实现了TL494在PSpice中的模型库。然后设计了基于TL494控制的Buck电路,通过实验对所建模型进行验证,将仿真结果与实验结果进行对比,证明了所建模型的正确性与可行性。 The macro-model of switching power supply integrated controller TL494 is presented in this paper. Because TL494 contains all functions that a switching power controller needed, and it widely used in single-ended forward,half-bridge and full-bridge switching power supply,the study of PSpice macromodel of TL494 has important significance to the design and analysis of the controller chip. Firstly, the internal structure and working principle of TL494 is given. The macro-model of each PSpice function module is established and packaged,which realize the model of TL494 in the PSpice model library. And then a Buck circuit which based on TL494 control is designed, the macro-model of TL494 has been verified thought the experiment and the result of the simulation and experiment is contrasted, which proves the correctness and feasibility of the proposed model
出处 《系统仿真技术》 2013年第3期270-277,共8页 System Simulation Technology
基金 国家自然科学基金资助项目(61102061) 陕西省自然科学基金资助项目(2013JM8001) 陕西省教育厅科研计划资助项目(11JK0926)
关键词 宏模型 TL494 功能模块 BUCK电路 macro-model switching power supply integrated controller function module buck circuit
  • 相关文献

参考文献6

二级参考文献21

  • 1张波.开关电源的优点及应用[J].电气开关,2007,45(1):39-40. 被引量:15
  • 2Lloyd H. Dixon, Control Loop Cookbook, Unitrod, Texas Instruments.
  • 3[1]Michael Cuviello, Dang Philip P, Chau Paul M. Reconfigurable Parallel Processor for Noise Suppression, Proceedings of SPIE: Image Perception and Performance, San Diego, 1999, 3663:333~341.
  • 4[2]Caimi Frank M, Schmals Marks S, Ritter Gerhard X.Mapping of Image Compression Transforms to Reconfigurable Processor: Simulation and Analysis. Proceedings of SPIE: Mathematics of Data/Image Coding, Compression and Encryption Ⅱ, SPIE, Denver, 1999, 3814:98~114.
  • 5[3]Knapp S. Using Programmable Logic to Accelerate DSP Functions. Xilinx Inc., 1998.
  • 6[4]DeHon A. Reconfigurable Architectures for General-Purpose Computing. Ph. D. Thesis, Massachusetts Institute of Technology, 1996.
  • 7[5]Eldredge J G, Hutchings B L. Run-Time Reconfiguration:A Method for Enhancing the Functional Density of SRAMbased FPGAs. Journal of VLSI Signal Processing, 1996,12: 67~ 86.
  • 8[6]Hutchings B L, Wirthlin M J. Implementation Approaches for Reconfigurable Logic Applications. Moore W, Luk W,Editors. Field-Programmable Logic and Applications.1995:419~428.
  • 9[7]Mangione-Smith B. Configurable Computing Solutions for Automatic Target Recognition. Arnold J, Pocek K L, Editors. Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, 1996, 3: 70~ 79.
  • 10[8]Hauser J R, Wawrzynek J. Garp: A Processor with a Reconfigurable Coprocessor. Arnold J M, Pocek K L, Editors. Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, 1997, 5:332~334.

共引文献15

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部