期刊文献+

带多阈值的两类索赔风险模型中的期望折现罚函数

The Expected Discounted Penalty Function for a Risk Model with Two Classes of Claims under Multiple Thresholds
原文传递
导出
摘要 本文考虑了带多阈值两类索赔到达风险模型,在假定两类索赔到达过程均为phase-type分布时,建立了期望折现罚函数所满足的积分-微分方程.并通过拉普拉斯变换讨论了方程的解. In this paper, we consider two independent classes of risk models under multiple thresholds in which both of the two inter-claim times have phase-type distributions. We ob- tain the integro-differential equations with boundary conditions for the expected discounted penalty function. Last, we discuss the solutions through Laplace transforms.
出处 《应用数学学报》 CSCD 北大核心 2013年第5期821-830,共10页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金项目(71171078 71371068) 教育部博士点基金项目(20100161110022) 中国博士后科学基金项目(2012M521514) 湖南省博士后科研资助专项计划项目(2012RS4030) 湖南省教育厅青年项目(13B034) 湖南省高校科技创新团队资助 岳阳市科技计划项目资助
关键词 两类风险过程 GERBER-SHIU函数 多层阈值 Phase—type分布 two classes of risk processes Gerber-Shiu penalty function multiple thresholds phase-type distribution
  • 相关文献

参考文献7

  • 1Li S, Lu Y. On the Expected Discounted Penalty Functions for Two Classes of Risk Processes. Insurance: Mathematics and Economies, 2005, 36:179-197.
  • 2Zhang Z M, Li S, Yang H. The Gerber-Shiu Discounted Penalty Functions for a Risk Model with Two Classes of Claims. Journal of Computational and Applied Mathematics, 2009, 230:643-655.
  • 3Ji L, Zhang C. The Gerber-Shiu Penalty Functions for Two Classes of Renewal Risk Processes. Journal of Computational and Applied Mathematics, 2010, 233:2575-2589.
  • 4Asmussen S. Ruin Probabilities. Singapore: World Scientific, 2000.
  • 5Jiang W Y, Yang Z J, Li X P. The Discounted Penalty Function with Multi-layer Dividend Strategy in the Phase-type Risk Model. Statistics and Probability Letters, 2012, 82:1358-1366.
  • 6Lin X S, Sendova K P. The Compound Poisson Risk Model with Multiple Thresholds. Insurance: Mathematics and Economics, 2008, 42:617-627.
  • 7Lu Y, Li S. The Markovian Regime-switching Risk Model with a Threshold Divident Strategy. In- surance: Mathematics and Economics, 2009, 44:296-303.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部