期刊文献+

Cu-Ag合金热压缩流变应力行为 被引量:4

Flow Stress Behavior of Cu-Ag Alloy under Hot Compression Deformation
原文传递
导出
摘要 在应变速率为0.01~10.00s^-1、变形温度为700—850℃的条件下,通过热压缩实验研究Cu-Ag合金的高温流变行为,发现该合金高温流变应力对温度和应变速率比较敏感,且在不同条件下呈现的软化特征也有区别。通过双曲正弦本构方程和线性回归分析,得到了不同变形条件下,关于结构因子、材料参数、以及热变形激活能的6次多项式方程,从而建立了随材料参数变化的Cu—Ag合金流变应力本构模型。根据动态材料模型(DMM)建立功率耗散图和失稳图,并通过叠加得到Cu-Ag合金的热加工图,然后,利用热加工图确定了该合金的加工安全区和流变失稳区。分析可知Cu—Ag合金的最佳变形工艺参数主要处于3个区问:低温低应变速率区(变形温度为700—770℃,应变速率为0.0100~0.0316s^-1),该区域的峰值功率耗散系数叼为0.46;高温中应变速率区(变形温度为780~835℃,应变速率为0.1—1.0s^-1)。该区域的峰值功率耗散系数叼为0.33;和高温高应变速率区(变形温度为835—850℃,应变速率为3.162—10.0008^-1),该区域的功率耗散系数η峰值为0.33。 The hot flow stress behavior of Cu-Ag alloy was studied by hot compression tests at the strain rates of 0.01 - 10.00 s and the temperatures of 700 - 850℃. The results showed that the high-temperature flow stress of the alloy was sensitive to temperature and strain rate, and softening characteristics were different under the different conditions. Through hyperbolic sine constitutive equation and analysis of hnear regression,6 times polynomial equations under different deforming conditions were obtained about structure factor A, the material parameters a, n and the hot deformation activation energy Q. Thus, the flow stress constitutive equation of alloy was established. The processing map of Cu-Ay alloy was set up through the power dissipation map and instability map which were estab- lished based on the dynamic material modeling (DMM). Then the processing zone and flow instability region based processing map were determined. The results showed that the optimal deformation parameters included three areas: the low temperature and low strain rate region (deformation temperature of 700 - 770 ℃, strain rate of 0.0100 - 0.0316 s^- 1 ), in which the maximum power dissipation coefficient ηwas 0.46 ; high temperature and medium strain rate region ( deformation temperature of 780 - 835℃, strain rate of 0.1 - 1.0 s^-1 ), in which the maximum power dissipation coefficient ηwas 0.33 ; and high temperature and high strain rate ( deformation temperature of 835 -850 ℃, strain rate of 3. 162 - 10.000 s-1 ), in which the maximum power dissipation coefficient ηwas 0.33.
出处 《稀有金属》 EI CAS CSCD 北大核心 2013年第5期695-701,共7页 Chinese Journal of Rare Metals
基金 中央高校基本科研业务费(CDJZR11130003)资助项目
关键词 CU-AG合金 热压缩变形 流变应力模型 加工图 Cu-Ag alloy hot compression deformation flow stress model processing map
  • 相关文献

参考文献20

  • 1Tian Y Z, Zhang Z F. Microstructures and tensile de- formation behavior of Cu-16wt% Ag binary alloy [ J ]. Materials Science and Engineering A, 2009, 508: 209.
  • 2Zhou Z M, Gao J, Li F, Wang Y P, Kolbe M. Experi- mental determination and thermodynamic modeling of phase equilibria in the Cu-Cr system [ J ]. Journal of Materials Science & Technology, 2011,46 : 7039.
  • 3Badawy W A, Ismail K M, Fathi A M. Corrosion con- trol of Cu-Ni alloys in neutral chloride solutions by amino acids [ J ]. Journal of Alloys and Compounds , 2009, 484 (1-2) : 365.
  • 4蔡薇,刘仁辉,魏仕勇,刘羽飞.黄铜表面富植酸钝化工艺研究[J].稀有金属,2012,36(4):671-675. 被引量:8
  • 5肖艳红,郭成.HPb59-1黄铜热压缩变形流动应力方程的构建及应用[J].锻压技术,2012,37(3):127-132. 被引量:9
  • 6文建平.薄壁紫铜管弯曲工艺及模具设计[J].锻压技术,2012,37(1):132-135. 被引量:5
  • 7颜芳,孟亮,张雷.热处理温度对纤维相强化Cu-12Ag合金组织性能的影响[J].金属学报,2004,40(8):891-896. 被引量:10
  • 8Gaganov A, Freudenberger J, Grunberger W, Schuhz L. Microstructural evolution and its effect on the mechanical properties of Cu-Ag microcomposites [ J]. Zeitschrift fur Metallkunde, 2004, 95: 425.
  • 9Hirota T, Imai A, Kumano T, Ichihara M, Sakai Y, In- oue K, Maeda H. Development of Cu-Ag alloys con- ductor for high field magnet [ J ]. Applied Physics Let- ters, 1994, 30(4): 1891.
  • 10Hong S I, Hill M A. Microstructural stability and me- chanical response of Cu Ag microcomposite wires [ J ]. Aeta Metall. Mater, 1998, 46: 4111.

二级参考文献81

共引文献87

同被引文献37

  • 1鞠泉,李殿国,刘国权.15Cr-25Ni-Fe基合金高温塑性变形行为的加工图[J].金属学报,2006,42(2):218-224. 被引量:57
  • 2黄天林,陈宏生,刘伟,Andrew Godfrey,刘庆.冷轧多晶纯镍中晶界对显微硬度和微观组织结构的影响[J].稀有金属,2007,31(5):590-595. 被引量:7
  • 3卢瑜,张立文,邓小虎,裴继斌,王赛,张国梁.纯镍动态再结晶过程的元胞自动机模型[J].塑性工程学报,2008,15(2):70-75. 被引量:7
  • 4Satou M, Abe K, Kayana H. High-temperature de- formation of modified V-Ti-Cr-Si type alloys [ J ]. Jour- nal of Nuclear Materials, 1991,179-181( 1 ) : 757.
  • 5Dediurin A I, Platov Y M, Zsakharova M I, Borovitskaja I V, Artemov N A. Effect of neutron irradiation on swelling, elastic modulus and thermal conductivity of V-Ga alloys [ J ]. Journal of Nuclear Materials, 1998, 258-263 (2) : 1409.
  • 6Evtikin V A, Lyublinski I E, Vertkov A V, Korjavi V M. Lithium-vanadium experimental facility for blanket problems investigation [ A ]. Proceedings of the Third International Symposium on Fusion Nuclear Technology [ C ]. los Angeles: Fusion Engineering and Design, 1995. 731.
  • 7谌继明.聚变应用钒基合金结构材料的研究进展[A].2006全国核材料学术交流会论文集[C].成都:中国核学会,2006.391.
  • 8Jonas J J, Sellers C M, Tegart W J M. Strength and structure under hot working conditions [ J ]. Internation- al Metallurgical Reviews, 1969, 14( 1 ) : 1.
  • 9Rao K P, Hawboh E B. Assessment of simple flow- stress relationships using literature data for a range of steels [ J ]. Journal of Materials Processing Technology, 1992, 29(1-3) : 15.
  • 10Narayana M S V S, Nageswara R B, Kashyap B P. Processing maps for hot deformation of % aluminide al- loy Ti-24Al-llNb [ J]. Journal of Materials Science, 2002, 37(6) : 1197.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部