期刊文献+

解非线性方程组的多目标优化进化算法

Multi-objective evolutionary algorithm for solving nonlinear system of equations
在线阅读 下载PDF
导出
摘要 如何有效地求解复杂非线性方程组是进化计算领域一个新的研究问题。将非线性方程组等价地转化成多目标优化问题,同时设计了求解的多目标优化进化算法。为了提高算法的搜索能力及避免算法陷入局部最优,采用了自适应Levy变异进化算子和均匀杂交算子。计算机仿真表明该算法对非线性方程组的求解是有效的。 How to effectively solve complex nonlinear system of equations is a novel research problem in evolution field.Nonlinear system of equations is transformed into a multi-objective optimization problem and a new multi-objective optimization evolutionary algorithm is proposed.In order to enhance the search ability of the proposed algorithm and avoid the algorithm falls into the local optimum,the self-adaptive evolution operator and the uniform crossover operator are used.The computer simulations demonstrate the effectiveness of the proposed algorithm to solve nonlinear system of equations.
出处 《计算机工程与应用》 CSCD 2013年第18期48-51,共4页 Computer Engineering and Applications
基金 陕西省教育厅科研计划项目(No.11JK0506 No.12JK1003) 宝鸡文理学院校级重点科研计划项目(No.ZK12044 No.ZK12092)
关键词 非线性方程组 进化计算 多目标优化 最优解 nonlinear system of equations evolutionary computation multi-objective optimization optimal solutions
  • 相关文献

参考文献15

  • 1Nie P Y.A null space method for solving system of equations[J].Appl Math Computation,2004,149(1):215-226.
  • 2Nie P Y.An SQP approach with line search for a system of nonlinear equations[J].Math Comput Model,2006,43(3/4):368-373.
  • 3Grapsa T N,Vrahatis M N.New dimension-reducing method for solving systems of nonlinear equations[J].Int Jour Comput Math,1995,55(3/4):235-244.
  • 4Grosan C,Abraham A.A new approach for solving nonlinear equations systems[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2008,38(3):698-714.
  • 5Denis J E.On Newton’s method and nonlinear simultaneous replacements[J].SIAM J Numer Anal,1967,4:103-108.
  • 6Grapsa T N,Vrahatis M N,Denis J E,et al.A trust-region algorithm for least-squares solutions of nonlinear systems of equalities and inequalities[J].SIAM J Opt,1999,9(2):291-315.
  • 7Broyden C G.A class of methods for solving nonlinear simultaneous equations[J].Math Comput,1965,19(92):577-593.
  • 8Denis J E,Wolkowicz H.Least change secant methods,sizing,and shifting[J].SIAM J Numer Anal,1993,30:1291-1314.
  • 9Deb K.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-187.
  • 10张安玲,刘雪英.求解非线性方程组的拟牛顿-粒子群混合算法[J].计算机工程与应用,2008,44(33):41-42. 被引量:20

二级参考文献35

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部