期刊文献+

电子系统状态时间序列预测的优化相关向量机方法 被引量:7

Condition time series prediction of electronic system based on optimized relevance vector machine
在线阅读 下载PDF
导出
摘要 针对电子系统状态时间序列的预测问题,提出一种基于量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)的相关向量机(relevance vector machine,RVM)方法。对电子系统状态时间序列进行相空间重构,建立了RVM回归预测模型;以交叉验证误差最小作为优化目标,将RVM核参数表示为量子空间中的粒子位置,采用QPSO算法实现RVM模型参数的自动优化选择。雷达发射机状态时间序列预测实例表明,相比已有方法,所提方法具有更高的预测精度;同时,能够输出预测值的置信区间,有利于对电子系统未来健康状况做出更加可靠的判断。 A method based on optimal relevance vector machine (RVM) is proposed to solve the problem of electronic system condition time series prediction. Based on the phase space reconstruction of electronic system condition time series, the RVM regression model is established. A quantum-behaved particle swarm optimiza- tion (QPSO) algorithm is employed to realize automatic selection of the established model parameters, which adopts cross-validation error as the optimization objective function and takes the kernel parameter as the particle position in quantum space. Experimental results show that the proposed method has higher point prediction ac- curacy and can provide probabilistic predictions, which is conducive to determine the future health status of elec- tronic systems more reliably.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第9期2011-2015,共5页 Systems Engineering and Electronics
基金 武器装备预研基金(9140A27020212JB14311)资助课题
关键词 状态时间序列预测 电子系统 相关向量机 交叉验证 量子粒子群优化 condition time series prediction electronic system~ relevance vector machine (RVM) cross-validation~ quantum-behaved particle swarm optimization (QPSQ)
  • 相关文献

参考文献16

  • 1Goel A,Graves R J.Electronic system reliability:collating prediction models[J].IEEE Trans.on Device and Materials Reliability,2006,6(2):258-265.
  • 2许丽佳.电子系统的故障预测与健康管理技术研究[D].成都:电子科技大学,2005.
  • 3张弦,王宏力,张金生,孙渊.状态时间序列预测的贝叶斯最小二乘支持向量机方法[J].西安交通大学学报,2010,44(10):42-46. 被引量:12
  • 4张弦,王宏力.局域极端学习机及其在状态在线监测中的应用[J].上海交通大学学报,2011,45(2):236-240. 被引量:12
  • 5Tipping M E.The relevance vector machine[C]//Proc.of the Advances in Neural Information Processing Systems 12,2000:652-658.
  • 6Tipping M E.Sparse Bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research,2001,1(3):211-244.
  • 7Tipping M E,Faul A C.Fast marginal likelihood maximisation for sparse Bayesian models[C]// Proc.of the 9th International Workshop on Artificial Intelligence and Statistics,2003:1-13.
  • 8Oikonomopoulos A,Patras I,Pantic M.Spatiotemporal salient points for visual recognition of human actions[J].IEEE Trans.on Systems,Man,and Cybernetics,2006,36(3):710-719.
  • 9Gholami B,Haddad W M,Tannenbaum A R.Relevance vector machine learning for neonate pain intensity assessment using digital imaging[J].IEEE Trans.on Biomedical Engineering,2010,57(6):1457-1466.
  • 10Williams O,Blake A,Cipolla R.Sparse Bayesian learning for efficient visual tracking[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2005,27(8):1292-1304.

二级参考文献41

共引文献42

同被引文献100

引证文献7

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部