期刊文献+

Weak KKM theorems in generalized finitely continuous space with applications

Weak KKM theorems in generalized finitely continuous space with applications
在线阅读 下载PDF
导出
摘要 Some new weak Knaster-Kuratouski-Mazurkiewicz (KKM) theorems are proved under the noncompact situation in the generalized finitely continuous space (GFC-space) without any convexity. As applications, the minimax inequalities of the Ky Fan type are also given under some suitable conditions. The results unify and generalize some known results in recent literatures. Some new weak Knaster-Kuratouski-Mazurkiewicz (KKM) theorems are proved under the noncompact situation in the generalized finitely continuous space (GFC-space) without any convexity. As applications, the minimax inequalities of the Ky Fan type are also given under some suitable conditions. The results unify and generalize some known results in recent literatures.
作者 方勉 王磊
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第10期1291-1296,共6页 应用数学和力学(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.11126346)
关键词 weak Knaster-Kuratouski-Mazurkiewicz (KKM) mapping generalized finitely continuous space (GFC-space) minimax inequality GFC-quasicovex weak Knaster-Kuratouski-Mazurkiewicz (KKM) mapping generalized finitely continuous space (GFC-space) minimax inequality GFC-quasicovex
  • 相关文献

参考文献16

  • 1Knaster, B,. Kuratowski, K, and Mazurkiewicz, S. Ein beweis des fixpunksates fur n-dimensional simplexe. Fund. Math, 14, 132-137 (1929).
  • 2Horvath, C. Some results on multivalued mappings and inequalities without convexity. Nonlinear and Convex Analysis, Lecture Notes in Pure and Applied Mathematics, Dekker, New York, 99-106 (1987).
  • 3Park, S. and Kim, H. Coincidence theorems for admissible multifunctions on generalized convex spaces. Y. Math. Anal. Appl, 197, 173 187 (1996).
  • 4Ben-E1-Mechaiekh, H, Chebhi, S, Florenzano, M, and Linewes, J. V. Abstract convexity and fixed points. J. Math. Anal. Appl, 222, 138-150 (1998).
  • 5Ding, X. P. Maximal element theorems in product FC-space and generalized games. J. Math. Anal. Appl, 305, 29-42 (2005).
  • 6Khanh, P. Q. and Quan, N. H. Intersection theorem, coincidence theorems and maximal-element theorems in GFC-space. Optimization, 59, 29-42 (2010).
  • 7Khanh, P. Q. and Quan, N. H. General extence theorems, alternative theorems and applications to minimax problems. Nonlinear Anal, T2, 2706-2715 (2010).
  • 8Khanh, P. Q. and Quan, N. H. Existence results for general inclusions using generalized KKM theorems with applications to minimax problem. J. Optim. Theory Appl, 146, 640-650 (2010).
  • 9Khanh, P. Q. and Quan, N. H. Generic stability and essential components of generalized KKM points and applications. J. Optim. Theory Appl, 148, 488-504 (2011).
  • 10Khanh, P. Q, Long, V. S. T, and Quan, N. H. Continuous selection, collectively fixed points and weak Knaster-Kuratowki-Mazurkiewicz mapping in optimization. J. Optim. Theory Appl, 151, 552-572 (2011).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部