期刊文献+

一种考虑时空分布特性的区域风电功率预测方法 被引量:11

Regional Wind Power Prediction Considering Temporal and Spatial Characteristics
在线阅读 下载PDF
导出
摘要 为了有效解决风电场数据丢失时直接相加法无法进行区域风电功率预测的问题,提出了一种考虑时空分布特性的区域风电功率预测方法。为降低模型的复杂性,根据风电场及风能信息对子区域进行具体分析。在此基础上,利用相关系数法,选择风电场出力与子区域出力间相关系数绝对值大的风场为基准风电场。以所选基准风电场预测功率为输入,利用神经网络方法,直接预测各子区域功率,整个区域预测结果为各子区域预测值之和。算例结果表明:利用相关系数法选择基准风电场无需大量历史数据支撑,原理简单易于实现;模型与风电场所采用的预测系统无关,易于工程推广应用;模型无需考虑非基准风电场功率预测情况,成本更低、效益更高;采用该模型后子区域预测误差比直接相加的方法降低了5%,整个区域预测误差仅为20.8%。 A regional wind power prediction method considering temporal and spatial characteristics is proposed to effectively solve the unavailability of direct-adding-up method in the case of missing data.To reduce the model complexity,the region is divided into several subregions according to the information from this region.Furthermore,a correlation coefficient method is proposed to select reference wind farms.The correlation coefficient between wind-farm power output and sub-region power output is calculated separately and compared with each other.Farms with larger absolute correlation coefficient are chosen as the reference ones.A back propagation neural network is adopted to directly predict wind power output of each sub-region,and the predicted power of reference farms in this sub-region is considered as the input.The regional wind power prediction can be achieved after summing the prediction results of subregions.The application shows that the correlation coefficient method needs less history data and is easy to realize.The proposed model is compatible with various wind farm power prediction systems and independent on the power prediction of non-reference farms,thus the prediction is more efficient with lower cost.The root mean square error declines by 5 % compared with that in direct-adding-up method,and the regional wind power prediction error reaches only 20.8%.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第10期68-74,共7页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2012AA050201)
关键词 子区域 基准风电场 神经网络 区域功率预测 sub-region reference wind farm neural network regional power prediction
  • 相关文献

参考文献15

  • 1FOCKEN U,LANGE M,MONNICH K,et al.Shortterm prediction of the aggregated power output of wind farms:a statistical analysis of the reduction of the prediction error by spatial smoothing effects[J].Journal of Wind Engineering and Industrial Aerodynamics,2002,90(3):231-246.
  • 2HAN Yu,CHANG Liuchen.A study of the reduction of the regional aggregated wind power forecast error by spatial smoothing effects in the maritime Canada[C]//2010 IEEE Electric Power and Energy Conference.New York,USA:IEEE Computer Society,2010:942-947.
  • 3NANAHARA T,ASARI M,MAEJIMA T,et al.Smoothing effects of distributed wind turbines:part 2 coherence among power output of distant wind turbines[J].Wind Energy,2004,7(2):75-85.
  • 4FOCKEN U,LANGE M,WALDL H P.Previento:a wind power prediction system with an innovative upscaling algorithm[C]// European Wind Energy Conference.Brussels,Belgium:European Wind Energy Association,2001:826-829.
  • 5ISHIHARA T,YAMAGUCHI A,OGAWA T,et al.An upscaling approach for the regional wind power forecasting[C]// European Wind Energy Conference and Exhibition.Brussels,Belgium:European Wind Energy Association,2007:948-951.
  • 6NIELSEN T S,MADSEN H,NIELSEN H A,et al.Prediction of regional wind power[EB/OL].[2013-02-22].http:// orbit.dtu.dk/fedora/objects/orbit:50538/datastreams/file_2802354/content.
  • 7PINSON P,SIEBERT N,KARINIOTAKIS G.Forecasting of regional wind generation by a dynamic fuzzyneural network based upscaling approach[EB/OL].[2013-03-01].http:// hal.archires-ouvertes.fr/docs/00/53/05/50/PDF/fiche_00530550.pdf.
  • 8SIEBERT N.Development of methods for regional wind power prediction[D].Paris,France:Ecole des Mines de Paris,2008.
  • 9LOBO M G,SANCHEZ I.Regional wind power forecasting based on smoothing techniques,with application to the Spanish peninsular system[J].IEEE Transactions on Power Systems,2012,27(4):1990-1997.
  • 10白永祥,房大中,侯佑华,朱长胜.内蒙古电网区域风电功率预测系统[J].电网技术,2010,34(10):157-162. 被引量:30

二级参考文献19

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:585
  • 2丁明,张立军,吴义纯.基于时间序列分析的风电场风速预测模型[J].电力自动化设备,2005,25(8):32-34. 被引量:185
  • 3吴国旸,肖洋,翁莎莎.风电场短期风速预测探讨[J].吉林电力,2005,33(6):21-24. 被引量:71
  • 4国务院.中化人民共和国可再生能源法[R].北京:国务院,2006.
  • 5Andrew B. Simulation of short-term wind speed forecast errors using a multi-variate ARMA(1,1) time-series model[D]. Stockholm, Sweden: Royal Institute of Technology, 2005.
  • 6Barbara G B, Richard W K, Allan H M. Time series models to simulate and forecast wind speed and wind power[J]. Journal of Climate andApplied Meteorology, 1984(23): 1184-1195.
  • 7Lexiadis M A, Dokopoulos P, Sahsamanoglou H, et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998, 63(1): 61-68.
  • 8Bossanyi E A. Short-term wind prediction using kalman filters[J]. Wind Engineering, 1985, 9(1): 1-8.
  • 9Kariniotakis G N, Stavrakakis G S, Nogaret E F. Wind power forecasting using advanced neural networks models[J]. IEEE Trans on Energy Conversion, 1996, 11(4): 762-767.
  • 10Sfetsos A. A comparison of various forecasting techniques applied to mean hourly wind speed time series[J]. Renewable Energy, 2000(21): 23-35.

共引文献29

同被引文献118

引证文献11

二级引证文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部