期刊文献+

改进的预处理共轭梯度图像复原算法 被引量:2

An Improved PCG Algorithm for Image Restoration and Reconstruction
在线阅读 下载PDF
导出
摘要 针对Tikhonov正则化的预处理共轭梯度图像复原算法中模糊图像取全零扩展矩阵的不足之处,研究了零边界条件下Tikhonov正则化的预处理共轭梯度算法.提出了新的模糊图像的扩展矩阵,降低了原矩阵向量积的计算误差,修正了初始梯度的取值.改进算法更符合真实的图像退化过程,有效提高了复原的图像质量.实验结果表明:对于各种退化造成的模糊图像,与当前求解全变分正则化的IST、TwIST、SALSA算法比较,本文算法复原效果优于当前流行的图像复原算法. To deal with the shortcoming of the preconditioning conjugate gradient (PCG) method with Tikhonov regularization in which the blurred image is extended with a zeros extension matrix. With the careful analysis of the PCG method with Tikhonov regularization under zero boundary condition, a new extension matrix for the blurred image was proposed. It could decrease the matrix vector multiplication computational error and modify the initial gradient. The improved algorithm is in accord with the real image blurring process and increases the quality of recovered image. Experiments show that, compared with the state-of-the-art algorithms of IST, TWIST and SALSA which solve the total-variation (TV) regularization, the proposed algorithm performs favorably.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第9期980-984,990,共6页 Transactions of Beijing Institute of Technology
基金 国家"九七三"计划项目(2009CB72400603) 国家自然科学科学仪器专项资助项目(61027002) 国家自然科学基金资助项目(60972100)
关键词 图像复原 TIKHONOV正则化 预处理共轭梯度 image restoration; Tikhonov regularization; preconditioning coniugate gradient
  • 相关文献

参考文献8

  • 1Aubert G, Kornprobst P. Mathematical problems in image processing[M]. New York: Springer Science+Business Media, 2006.
  • 2Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Phys D, 1992,60:259-268.
  • 3Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM J,Imaging Sci, 2009,2(1):183-202.
  • 4Bioucas-DiasJ, FigueiredoM. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007,16(12):2992-3004.
  • 5Afonso M V, Bioucas-Dias J M, Figueiredo M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE Transactions on Image Processing, 2010,19(9):2345-2356.
  • 6Gonzalez G C,Woods R E. Digital image processing[M]. 3rd ed. London: London Prentice Hall, 2007:333-335.
  • 7Vogel C R. Computational methods for inverse problems[M]. Philadelphia: SIAM, 2002.
  • 8ChanTF,OlkinJA. Circulant preconditioners for Toeplitz-block matrices[J]. Numerical Algorithms, 1994,6:89-101.

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部