期刊文献+

基于NARX神经网络的农产品价格时间序列预测方法研究 被引量:9

Time Series of Agricultural Product Price Forecast Based on Nonlinear Auto-regression with External Input Neural Network
在线阅读 下载PDF
导出
摘要 针对传统时间序列预测方法在非线性时间序列预测上的不足,引入了非线性有源自回归神经网络(NARX),建立了基于非线性有源自回归神经网络农产品价格时间序列预测模型。该模型利用核函数对农产品价格时间序列进行数据变换;再用统计分析方法对模型性能进行评价、分析,进而对模型性能进行优化。实验结果表明:非线性有源自回归神经网络较传统时间序列预测模型,对非线性时间序列预测有更好的适应性和更高的预测精度。 This paper introduced a nonlinear auto-regression with external input neural network(NARX) to solve the problem that traditional time series forecast method is impossible to analyze the nonlinear time series matters.A time series prediction model for agricultural products was applied in this paper based on NARX.Firstly,a kernel function was applied into the new prediction model to realize data transformation from time series of agricultural products.Secondly,statistical analysis was applied to evaluate the functions of the new prediction model and then to optimize the prediction model.The results showed the new model based on NARX has better adaptability and can predict more accurate than the traditional time series prediction model.
作者 彭琳 林明
出处 《农机化研究》 北大核心 2013年第11期18-21,共4页 Journal of Agricultural Mechanization Research
基金 国家自然科学基金项目(31260292) 云南省自然基金项目(2008ZC050M)
关键词 非线性有源自回归 神经网络 时间序列 统计分析 农产品价格 NARX neural network time series statistical analysis agricultural product price
  • 相关文献

参考文献9

  • 1Zhang G P, Qi M. Neural Network Forecasting for Seasonal and Trend Time Series [ J ]. European J of Operational Re- search. 2005. 160(2) ,501-514.
  • 2[美]Simon Haykin.神经网络原理[M].叶世伟,史忠植译.北京:机械工业出版社,2004.
  • 3贺湘宇,何清华.基于NARX网络模型的挖掘机液压系统故障检测[J].机械科学与技术,2008,27(7):937-940. 被引量:9
  • 4Haykin S. Neural Networks: A Comprehensive Foundation [ M ]. New Jersey: Prentice-Hall Inc. , 1999.
  • 5Wong C X, Worden K. Generalised NARX shunting neural net-work modeling of friction [ J ], Mechanloal Systems and Signal Processing ,2007,21 ( 1 ) :553-572.
  • 6P Niyogi, F Girosi. On the relationship between generalization error, hypothesis complexity and sample complexity for Radial Basis Functions [ J ]. Neural Computation, 1996 ( 8 ) : 819 - 842.
  • 7许建华,张学工.经典线性算法的非线性核形式[J].控制与决策,2006,21(1):1-6. 被引量:12
  • 8A R Barron. Approximation and estimation bounds for artifi- cial neural networks[ J]. Machine Learning, 1994,14 : 115- 133.
  • 9Dasgupta S, Littman M L, McAllester D. PAC generalization hounds for eo- traininge//Advances in Neural Information Processing Systems 14 [ M ]. Cambridge, MA: The MIT Press, 2002:375-382.

二级参考文献54

  • 1苏浩秦,宋述杰,邓建华.基于限制最小二乘估计的飞机舵面故障诊断方法[J].机械科学与技术,2005,24(9):1033-1035. 被引量:5
  • 2周曲珠,芮延年.模糊理论在液压系统故障诊断中的应用[J].机械科学与技术,2006,25(12):1515-1518. 被引量:5
  • 3蒋浩天.工业系统的故障检测与诊断[M].北京:机械工业出版社,2003..
  • 4Anlauf J K, Biehl M. The Adatron, An Adaptive Perceptron [J]. Europhysics Letter, 1989, 10(7):687-692.
  • 5Vapnik V N. The Nature of Statistical Learning Theory [M]. Second Edition. New York: Springer-Verlag, 1999.
  • 6Vapnik V N. Statistical Learning Theory EM]. New York: John Wiley & Sons, 1998.
  • 7Cristianini N, Taylor J S. An Introduction to Support Vector Machines and other Kernel-Based Learning Methods [M]. Cambridge UK: Cambridge University Press, 2000.
  • 8Scholkopf B, Smola A J. Learning with Kernels-Support Vector Machines, Regularization, Optimization and Beyond[M]. Cambridge MA: MIT Press, 2001.
  • 9Aizerman M A, Braverman E M, Rozonoer L I.Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning [J].Automation and Remote Control, 1964, 25(6): 821-837.
  • 10Tou J T, Gonzalez R C, Pattern Recognition Principles[M]. New York: Addison-Wesly, 1974,.

共引文献21

同被引文献88

引证文献9

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部