期刊文献+

视觉认知计算模型综述 被引量:12

Review on Computational Model for Vision
在线阅读 下载PDF
导出
摘要 视觉认知计算模型作为联系视觉认知和信息计算的有效手段,其研究涉及到认知科学、信息科学等多个交叉学科,具有复杂性和多样性等特点.为能更好地把握其发展规律,文中从视觉计算角度系统总结视觉认知计算模型,以其两个主要来源为主线分别从生物视觉机制和视觉计算理论回顾视觉认知计算模型的发展.根据其研究的特点,对视觉认知计算模型的发展做出一定评述,并指出视觉认知计算模型的发展必将对计算视觉理论和生物视觉机制产生深远影响. The computational models for vision have the characteristics of complex and diversity, as they come from many subjects such as cognition science and information science. In this paper, the computational models for vision are investigated from the biological visual mechanism and computational vision theory systematically. Some points of view about the prospects of the computational model are presented. The development of the computational model will build the bridge for the computational vision and biological visual mechanism.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第10期951-958,共8页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61175007) 国家973计划项目(No.2012CB316302)资助
关键词 视觉认知 计算模型 生物视觉机制 计算视觉理论 Visual Cognition, Computational Model, Biological Visual Mechanism, Computational Vision Theory
  • 相关文献

参考文献55

  • 1Borji A, Itti L. State-of-the-Art in Visual Attention Modeling. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35 ( 1 ) : 185-207.
  • 2TenenbaumJ B, Griffiths T L, Kemp C. Theory-Based Bayesian Models of Inductive Learning and Reasoning. Trends in Cognitive Sciences, 2006,10(7): 309-318.
  • 3Roberts L. Machine Perception of Three-Dimensional Solids. Ph. 0 Dissertation. Cambridge, USA: Massachusetts Institute of Technolo?gy, 1963.
  • 4Marr D. Vision: A Computational Investigation into the Human Re?presentation and Processing of Visual Information. San Francisco, USA: Freeman, 1982.
  • 5Aloimonos Y. What I Have Learned. CVGIP: Image Understand?ing, 1994, 60(1) : 74-85.
  • 6Neisser U. Cognition and Reality. San Francisco, USA: Freeman, 1976.
  • 7Wandell B A. Foundations of Vision. Sunderland, USA: Sinauer Associates, 1995.
  • 8Gonzalez R C, Woods R E. Digital Image Processing. 2nd Edition. Upper Saddle River, USA: Prentice Hall, 2002.
  • 9Huang Kaiqi, Wang Liangsheng, Tan Tieniu , et al. A Real-Time Object Detecting and Tracking System for Outdoor Night Surveil?lance. Pattern Recognition, 2008, 41 (1) : 432-444.
  • 10Lachman R, Butterfield E C, LachmanJ. Cognitive Psychology and Information Processing: An Introduction. Hillsdale, USA: Lawrence Erlbaum Associates, 1979.

二级参考文献27

  • 1汪云九,程子习,姚国正,吴新年.人类视觉系统超视锐度现象的神经网络数学模型研究[J].生物物理学报,1989,5(1):84-89. 被引量:2
  • 2王胜初,方仲生,陈式苏.早期开角型青光眼感受野异常的推算[J].北京生物医学工程,1990,9(2):77-87. 被引量:1
  • 3[1]Tomas B A, Strickland R N. A study of scene structure in the saturation component of color images [J].Human Vision and Electronic Imaging, B E Rogowitz and J P Allebach, Bds, Proc of the SPIE, 1996,2657:32-41.
  • 4[2]Tomas B A, Strickland R N. Color image enhancement using spatially adaptive saturation feedback [C]. Image Processing, Proceedings, 1997. 3:30-33.
  • 5[3]Kokkeong Tan, Oakley J P. Enhancement of color images in poor visibility conditions [C]. Image Processing, Proceedings,2000.2: 788- 791.
  • 6[4]Faugeras O. Digital color image processing within the framework of a human visual model [J]. IEEE Trans on Acoustics, Speech, and Signal Processing,1979,27 (4): 380- 393.
  • 7[5]Wolf S, Ginosar R, Zeevi Y. Spatio-chromatic image enhancement based on a model of human visual information system [J]. Journal of Visual Communication and Image Representation, 1998, 9 (1): 25-37.
  • 8[6]Land E H. Recent advances in retinex theory [J].Vision Res,1986,26: 7-22.
  • 9[7]Brainard D H, Wandell B A. Analysis of the retinex theory of color vision [J]. J Opt Soc Am, 1986, 3:1651-1661.
  • 10[8]McCann J J. Lessons learned from mondrians applied to real images and color gamuts [R]. IS&T Rep. 1999, 14:1-8.

共引文献21

同被引文献152

引证文献12

二级引证文献266

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部