期刊文献+

基于分形理论的纳米颗粒多孔介质真空导热特性 被引量:13

Vacuum thermal conduction characteristic of nano-granule porous medium using fractal theory
在线阅读 下载PDF
导出
摘要 采用分形理论,描述了纳米颗粒多孔介质材料的微尺度空间结构,建立了分形等效单元体模型,分析了影响其真空下有效热导率关键因素为固体基质热导率、填充率、分形维数、分形直径、残余气体压力及热导率等,并导出了气相、固相热传导计算公式和热辐射等效热导率计算公式及多孔介质材料总有效热导率计算公式。研究表明,纳米颗粒有效热导率随着分形直径、残余气体压力的增大而增大,并给出了纳米颗粒多孔介质材料作为真空材料的最佳直径。同时,模型计算值与实验测量值比较,具有较好的一致性。该理论分析方法对新型真空绝热材料的研制和绝热性能的提高具有实用价值。 Based on the fractal theory,the micro-scale geometric structure of nano-granule porous medium was illustrated and the equivalent fractal unit model was proposed.The effective thermal conductivity of the nano-granule porous medium under the vacuum condition has some relation with the thermal conductivity of solid substrate,vacancy porosity,fractal dimension,fractal diameter,pressure and thermal conductivity of rarefied air,and environmental condition.The calculation models for thermal conductivities of air phase and solid phase,the equivalent thermal radiation and the total effective thermal conduction were constructed.The results show that the effective thermal conductivity of nano-granule porous medium increases with the increase of fractal diameter and rarefied air pressure within the material,but decreases with the increase of vacancy porosity.The optional diameter of the nano-granule is recommended.The calculated results are in good agreement with the experimental data.The study is useful for enhancing the adiabatic performance of nano-granule porous medium and developing new vacuum adiabatic materials.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第11期4008-4014,共7页 CIESC Journal
基金 上海海事大学科技基金项目(20120091)~~
关键词 分形理论 纳米颗粒多孔介质 真空绝热 热导率 fractal theory nano-granule porous medium vacuum insulation thermal conductivity
  • 相关文献

参考文献4

二级参考文献32

  • 1张忠进,郎敏.断电热线法测试材料导热系数的研究[J].东北电力学院学报,1995,15(4):16-20. 被引量:7
  • 2Caps R, Beyrichen H, Kraus D. Quality control of vacuum insulation panels: Methods of measuring gas pressure[J]. Vacuum, 2008, 82 (7): 691-699.
  • 3Simmler H, Heinemann Insulation Panels-Study on U, Kumaran K. Vacuum VIP-components and Panels for Service Life Prediction of VIP in Building Applications [C ]. HIPTI -High Performance Thermal Insulation, 2005, IEA/ECBCS Annex 39.
  • 4Hubert Schwab, Ulrich Heinemann, Andreas Beck. Dependence of Thermal Conductivity on Water Content in Vacuum Insulation Panels with Fumed Silica Kernels[J]. Journal of Thermal Envelope and Building Science, 2005, 28: 319-340.
  • 5Hubert Schwab, Ulrich Heinemann, Andreas Beck. Prediction of Service Life for Vacuum Insulation Panels with Fumed Silica Kernel and Foil Cover [J]. Journal of Thermal Envelope and Building Science, 2005, 28 (4): 357-374.
  • 6Hubert Schwab, Ulrich Heinemann, Johannes Wachtel. Predictions for the Increase in Pressure and Water Content of Vacuum Insulation Panels (VIPs) Integrated into Building Constructions using Model Calculations [J]. Journal of Thermal Envelope and Building Science, 2005 28 (4):27-350.
  • 7廖际常,张正德.粉末冶金多孔材料:下册[M].北京:冶金工业出版社,1979:1-32.
  • 8Mandelbrot B B.The fractal geometry of nature[M].New York:Freeman W H,1983.
  • 9Pitchumani R,Yao S C.Correlation of thermal conductivities of unidirectional fibrous composites using local fractal techniques[J].J Heat Transfer,1991,113(4):788.
  • 10Pitchumani R.Evaluation of thermal conductivities of disordered composite media using a fractal model[J].J Heat Transfer,1991,121(1):163.

共引文献38

同被引文献165

引证文献13

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部