摘要
β-Sialon/ZrN/ZrON composites were successfully fabricated by an in-situ carbothermal reduction?nitridation process with fly ash, zircon and active carbon as raw materials. The effects of raw materials composition and holding time on synthesis process were investigated, and the formation process of the composites was also discussed. The phase composition and microstructure of the composites were characterized by means of XRD and SEM. It was found that increasing carbon content in a sample and holding time could promote the formation of β-Sialon, ZrN and ZrON. The proper processing parameters to synthesize β-Sialon/ZrN/ZrON composites were mass ratio of zircon to fly ash to active carbon of 49:100:100, synthesis temperature of 1550 °C and holding time of 15 h. The average grain size ofβ-Sialon and ZrN(ZrON) synthesized at 1550 °C for 15 h reached about 2 and 1μm, respectively. The fabrication process ofβ-Sialon/ZrN/ZrON composites included the formation ofβ-Sialon and ZrO2 as well as the conversion of ZrO2 to ZrN and ZrON.
以粉煤灰、锆英石和活性炭为原料,采用原位碳热还原氮化法成功制备β-Sialon/ZrN/ZrON复合材料。研究配料组成和保温时间对合成过程的影响,并讨论材料的生成过程。通过XRD和SEM表征材料的相组成和显微组织。结果表明:增加试样中的碳含量以及延长保温时间均能促进β-Sialon、ZrN和ZrON的生成。合成β-Sialon/ZrN/ZrON复合材料的适宜工艺参数为锆英石、粉煤灰和活性炭的质量比49:100:100、合成温度1550°C、保温时间15 h。在1550°C保温15 h合成的β-Sialon和ZrN(ZrON)的平均粒径分别约为2和1μm。β-Sialon/ZrN/ZrON复合材料的制备过程包括β-Sialon和ZrO2的生成过程以及ZrO2向ZrN和ZrON的转化过程。
基金
Project(2013AA030902)supported by the National High-tech Research and Development Program of China
Projects(51074038,51274057)supported by the National Natural Science Foundation of China
Projects(N120402006,N100302002)supported by the Fundamental Research Funds for the Central Universities,China
Project(L2012079)supported by the Educational Commission of Liaoning Province of China
Project(110215)supported by the Training Program on National College Students Innovation Experiment