期刊文献+

无线传感器网络干扰分类识别机制的研究 被引量:8

Interference identification and classification mechanism for wireless sensor network
在线阅读 下载PDF
导出
摘要 针对在优化无线传感器网络传输性能时,识别出网络是否受到干扰并区分网络内与网络间的干扰类型是首要解决的问题。设计并实现了一种能够识别传感器网络干扰并区分网内、网间干扰类型的机制。首先通过实验获得了传感器网络在常见干扰状态下的有关性能参数,并对这些参数进行了相关性分析,之后基于Logistic分类模型建立了干扰状态以及网内、网间干扰类型的识别模型,并根据实测数据确定了该模型的参数。实际测试表明基于该分类模型的分类识别方法的准确率可达到97%以上,能够有效解决发现网络受到干扰的情况以及对网络干扰识别的问题。 The interference identification and classification of wireless sensor networks are important problems to im prove network performance. To solve such problems, methods for interference identification and classification were de signed and implemented. The experimental transmission parameters of the sensor network nodes were obtained in differ ent interference state, and then the Logistic model was used to identify the state of interference and classify the type of the interference based on the parameters given. The actual network data tests show that the classification model in the identification accuracy can be achieved more than 97%, which can effectively address the problem of recognition of net work interference.
出处 《通信学报》 EI CSCD 北大核心 2013年第10期28-36,共9页 Journal on Communications
基金 国家重点基础研究发展计划("973"计划)基金资助项目(2011CB302803) 国家自然科学基金资助项目(61202412 61003293) 国家科技重大专项基金资助项目(2010ZX03006-006) 工信部 财政部物联网专项"物联网应用中间件研发及产业化"基金资助项目~~
关键词 无线传感器网络 干扰识别 LOGISTIC模型 相关性分析 分类 wireless sensor network interference identification Logistic model correlation analysis classification
  • 相关文献

参考文献14

  • 1崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 2CAMP J, KNIGHTLY E. Modulation rate adaptation in urban and vehicular environments: cross-layer implementation and experimental evaluation[J]. IEEE/ACM Transactions on Networking, 2010, 18(6): 1949-1962.
  • 3FONSECA R, GNAWALI O, JAMIESON K, et al. Four-bit wireless link estimation[A]. Hot Topics in Networks (HotNets-VI)[C]. Atlanta, GA, 2007.
  • 4SCHMIDL T M, COX D C. Robust frequency and timing synchronization for OFDM[J]. IEEE Transactions on Communications 1997, 45(12):1613-1621.
  • 5MASE K, OKADA H, NAKANO Y. RSSI-based cross layer link quality management for layer 3 wireless mesh networks[A]. 17th International ConferenEe on Software, Telecommunications & Computer Networks[C]. 2009.
  • 6WOO A, CULLER D. Evaltlation of Efficient Link Reliability Estimators for Low-power Wireless Networks[R]. Berkeley: University of California.
  • 7张乐,李栋,崔莉.EasiTOD:一种降低传感器网络时效障碍物干扰的检测调节机制[J].计算机研究与发展,2009,46(12):2003-2013. 被引量:5
  • 8REIS C, MAHAJAN R, RODRIG M, et al. Measurement-based models of delivery and interference in static wireless networks[A]. Proceedings of the 2006 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications[C]. 2006.
  • 9ZHANG J, TAN K, ZHAO J, et al. A practical SNR-guided rate adaptation[A]. Proceedings of INFOCOM 2008[C]'. 2008.
  • 10VUTUKURU M, BALAKRISHNAN H, JAMIESON K. Cross-layer wireless bit rate adaptation[A]. Proceedings of SIGCOMM[C]. 2009.

二级参考文献94

  • 1崔莉,鞠海玲,苗勇,李天璞,刘巍,赵泽.无线传感器网络研究进展[J].计算机研究与发展,2005,42(1):163-174. 被引量:730
  • 2李燕君,王智,孙优贤.无线传感器网络的链路分析与建模[J].传感技术学报,2007,20(8):1846-1851. 被引量:23
  • 3Chatzigiannakis I, Mylonas G, Nikoletseas S. Modeling anu evaluation of the effect of obstacles on the performance of wireless sensor network [C] //Proc of the 39th Annual Syrup on Simulation IEEE Computer Society. Washington, DC: IEEE, 2006.
  • 4Hackmann G, Chipara O, Lu C. Robust topology control for indoor wireless sensor network [C] //Proc of the 6th ACM Conf on Embedded Network Sensor Systems. New York: ACM, 2008.
  • 5Son D, Krishnamachari B, Heidemann J. Experimental study of concurrent transmission in wireless sensor network [C] // Proc of ACM Conf on Embedded Networked Sensor Systems (Sensys). NewYork: ACM, 2006:237-250.
  • 6Lin S, Zhang J, Zhou G, et al. ATPC: Adaptive transmission power control for wireless sensor network [C]//Proc of the ACM Conf on Embedded Networked Sensor Systems (SenSys). New York: ACM, 2006: 223-236.
  • 7Wang Y, Martonosi M, Peh L. A new scheme on link quality prediction and its applications to metric-based routing [C] //Proc of the ACM Conf on Embedded Networked Sensor Systems (SenSys). New York: ACM, 2005.
  • 8Jure Leskovec, Purnamrita Sarkar, Carlos Guestrin. Modeling link qualities in a sensor network [J]. Informatica, 2005, 29(4): 445-452.
  • 9Cao Q, He T, Fang L, .et al. Efficiency centric communication model for wireless sensor network [C] //Proc INFOCOM 25th IEEE Int Conf on Computer Communications. Piscataway, N J: IEEE, 2006:1-12.
  • 10Box G E P, Jenkins G M. Time Series Analysis: Forecasting and Control [M]. San Fransisco, CA: Holden-Day, 1976.

共引文献733

同被引文献39

  • 1林心桐,张琳,吴志强,姜军.基于卷积神经网络与循环谱图的调制识别方法[J].太赫兹科学与电子信息学报,2021,19(4):617-622. 被引量:5
  • 2Dai Hong-ning.Throughput and delay in wireless sensor networks using directional antennas[C]//5th International Conference on Intelligent Sensors,Sensor Networks and Information Processing.Melbourne,Australia:IEEE,2009:421-426.
  • 3Wu Cui-mei,Yan Hai-rong,Huo Hong-wei.A multi-channel MAC protocol design based on IEEE 802.15.4 standard in industry[C]//10th IEEE International Conference on Industrial Informatics.Beijing,China:IEEE,2012:1206-1211.
  • 4Zheng Tao,Qin Ya-juan,Zhang Hong-ke,et al.A self-configurable power control algorithm for cognitive radio-based industrial wireless sensor networks with interference constraints[C]//2012 IEEE International Conference on Communications.Ottawa,Canada:IEEE,2012:98-103.
  • 5Chiwewe T M,Hancke G P.A distributed topology control technique for low interference and energy efficiency in wireless sensor networks[J].IEEE Transactions on Industrial Informatics,2012,8(1):11-19.
  • 6Gupta P,Kumar P R.The capacity of wireless networks[J].IEEE Transactions on Information Theory,2000,46(2):388-404.
  • 7Yao Min,Lin Chuang,Tian Yuan,et al.Energy and delay minimization in cluster-based wireless sensor networks[C]//2012 IEEE International Conference on Green Computing and Communications.Besancon,France:IEEE,2012:588-594.
  • 8Noori M,Ardakani M.Lifetime analysis of random event-driven clustered wireless sensor networks[J].IEEE Transactions on Mobile Computing,2011,10(10):1448-1458.
  • 9Maheshwari R,Jain S,Das S R.A measurement study of interference modeling and scheduling in low-power wireless networks[C]//Proceedings of the 6th International Conference on Embedded Networked Sensor Systems.Raleigh,US:ACM,2008:141-154.
  • 10Li Mo,Xu Xiao-hua,Wang Si-guang,et al.Efficient data aggregation in multi-hop wireless sensor networks under physical interference model[C]//6th International Conference on Mobile Adhoc and Sensor Systems.Macao,China:IEEE,2009:353-362.

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部