期刊文献+

两种离散过程神经网络算法及在图像恢复中的应用 被引量:1

Two discrete process neural network algorithm with application to image restoration
在线阅读 下载PDF
导出
摘要 为解决离散过程神经网络的训练问题,提出了两种基于数值积分的离散过程神经网络训练算法.分别采用三次样条积分和抛物插值积分直接处理隐层离散样本和权值的时域聚合运算,输出层采用普通神经元,采用L-M(Levenberg-Marquard)算法实现网络参数的调整.以模糊图像的恢复为例,实验结果表明,两种训练方法的性能比较接近,但都优于基于沃尔什变换的离散过程神经网络和基于样条差值函数的离散过程神经网络,从而揭示出数值积分方法在提升离散过程神经网络性能和应用方面具有一定潜力。 To address the training problem of discrete process neural networks, two training algorithms based on numeri- cal integration were proposed. The cubic spline integration and the parabolic interpolation integration were used in the hid- den layer to deal with the time-domain aggregation of discrete samples and weights. The classical neurons were used in out- put layer. In order to improve the convergence ability of the network, the Levenberg-Marquard algorithm was employed to ad- just the networks' parameters. The effeeiveness of the proposed algorithms was testified by applying the network to the resto- ration of a fuzzy image. Experimental results show that the performance of the two algorithms is relatively close and is superior to the Walsh transformation-based discrete process neural networks and spline function-based diserete process neural networks in both approximation ability and effect of image restoration, which reveals that the proposed methods of numerical integration have some potential in the performance improvement and application extension of discrete process neural networks.
作者 肖红 李盼池
出处 《信号处理》 CSCD 北大核心 2013年第9期1182-1189,共8页 Journal of Signal Processing
基金 国家自然科学基金(61170132)
关键词 离散过程神经网络 数值积分 三次样条积分 抛物插值积分 图像恢复 discrete process neural networks numerical integration cubic spline integration parabolic interpolation in-tegration image restoration
  • 相关文献

参考文献12

二级参考文献36

共引文献205

同被引文献14

  • 1许少华,何新贵.基于函数正交基展开的过程神经网络学习算法[J].计算机学报,2004,27(5):645-650. 被引量:73
  • 2李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1277
  • 3许少华,何新贵,刘坤,王兵.关于连续过程神经元网络的一些理论问题[J].电子学报,2006,34(10):1838-1841. 被引量:34
  • 4He Xin-gui and Liang Jiu-zhen. Process neural networks [C]. The 16th World Computer Congress 2000, Proceedings of the Conference on Intelligent Information Processing, Beijing, 2000: 143-146.
  • 5Zhong Shi-sheng, Li Yang, and Ding Gang. Continuous wavelet process neural network and its application[J]. NeuralNetwork World, 2007, 17(5): 483-495.
  • 6Ding Gang and Lin Lin. Elman-style process neural network with application to aircraft engine health condition monitoring[J]. Lecture Notes in Computer Science, 2011, 6675(1): 484-494.
  • 7Wang Bing, Xu Shao-hua, Meng Yao-hua, et al.. A process neural network based on improved particle swarm optimization and its application in PID control[J]. International Journal on Advances in Information Sciences and Service Sciences, 2013, 5(7): 701-709.
  • 8Chu, S C, Tsai P W, and Pan J S. Cat swarm optimization[C] Proceedings of the 9th Pacific Rim International Conference on Artificial intelligence, LNAI, 4099, 2006: 854-858.
  • 9Huttenlocher D P, Klanderman G A, and Rucklidge W J. Comparing images using the Hausdorff distance[J]. IEEE Transactions on Pattern Analysis and Intelligence, 1993, 15(9): 850-863.
  • 10付斌,李道国,王慕快.云模型研究的回顾与展望[J].计算机应用研究,2011,28(2):420-426. 被引量:119

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部