期刊文献+

基于网络拓扑特性的MCI分类

Topological Property of Connectivity Network for MCI Classification
在线阅读 下载PDF
导出
摘要 阿尔茨海默氏病(Alzheimer′s disease,AD)和轻度认知障碍(Mild cognitive impairment,MCI)是经常发生在老年人中的脑疾病,其主要表现为认知和智力的障碍。机器学习和模式识别方法已经被应用到对AD和MCI的诊断和分类中。最近,研究人员提出利用大脑连接网络实现对疾病的诊断和分类。大部分的研究主要集中在网络中提取一些局部的特性(如聚类系数),并利用机器学习的方法(如支持向量机)来实现对疾病的分类。然而,存在的研究表明AD以及MCI是和一个大规模的脑连接网络相关,而不仅是大脑的若干区域。因此,本文提出一种新的基于网络整体拓扑结构信息的分类方法,并将其用于对MCI疾病的分类。实验结果表明,本文的方法能够对分类结果有重要的改进。 Alzheimer's disease (AD) as well as its prodromal stage,i.e.,mild cognitive impairment (MCI),are one of the most prevalent dementia in older adults,which are characterized by cognitive and intellectual deficits.Machine learning and pattern recognition techniques have been applied to the study of AD/MCI.Recently,connectivity-network based classification methods are applied to the study of AD and MCI,i.e.,to identify the individuals with AD/MCI from the healthy controls (HC).However,most existing methods focus on using some local properties of a connectivity network (e.g.,local clustering),although other network properties,such as whole topological property,can potentially be used.Moreover,existing studies indicate that AD/MCI is associated with a large-scale highly-connected functional network,rather than a single isolated region.So,by employing kernel based approach,this paper proposes a novel connectivity network based method to extract and quantify whole topological information of connectivity network for improving the classification performance.The proposed method is evaluated on 12 MCI patients and 25 healthy controls,and promising experimental results are obtained.
作者 接标 张道强
出处 《数据采集与处理》 CSCD 北大核心 2013年第5期602-607,共6页 Journal of Data Acquisition and Processing
基金 江苏省杰出青年基金(SBK201310351)资助项目 高等教育博士学科点专项科研基金(20123218110009)资助项目 南京航空航天大学基本科研业务费专项资金(NE2013105)资助项目 安徽省高校省级自然科学研究(KJ2013Z095)资助项目
关键词 图核 核方法 连接网络 轻度认知障碍 graph kernel kernel connectivity network mild cognitive impairment (MCI)
  • 相关文献

参考文献25

  • 1Brookmeyer R,Johnson E,Ziegler-Graham K,et al.Forecasting the global burden of Alzheimer's disease[J].Alzheimers and Dementia,2007,3 (3):186-191.
  • 2Petersen R C,Doody R,Kurz A,et al.Current concepts in mild cognitive impairment[J].Archives of Neurology,2001,58(12):1985-1992.
  • 3崔博.ANALYSIS ON GRAY NODES AND GRAYNESS DEGREE IN COMPLEX NETWORK[J].Transactions of Nanjing University of Aeronautics and Astronautics,2012,29(2):125-130. 被引量:1
  • 4He Y,Evans A.Graph theoretical modeling of brain connectivity[J].Current Opinion in Neurology,2010,23(4):341-350.
  • 5Xie T,He Y.Mapping the Alzheimer's brain with connectomics[J].Frontiers in Psychiatry / Frontiers Research Foundation,2011,2:77.
  • 6Zhou L,Wang Y,Li Y,et al.Hierarchical anatomical brain networks for MCI prediction:revisiting volumetric measures[J].Plos One,2011,6 (7):e21935.
  • 7Huang S A,Li J,Sun L,et al.Learning brain connectivity of Alzheimer's disease by sparse inverse covariance estimation[J].Neuroimage,2010,50(3):935-949.
  • 8Chen G,Ward B D,Xie C,et al.Classification of Alzheimer disease,mild cognitive impairment,and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging[J].Radiology,2011,259(1):213-219.
  • 9Wee C Y,Yap P T,Denny K,et al.Resting-state multi-spectrum functional connectivity networks for identification of MCI patients[J].Plos One,2012,7(5):e37828.
  • 10Wee C Y,Yap P T,Li W,et al.Enriched white matter connectivity networks for accurate identification of MCI patients[J].Neuroimage,2011,54(3):1812-1822.

二级参考文献14

  • 1边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2007:87-91,223-226.
  • 2Nissen S E, York P. Intravascular ultrasound: nov- el pathophysiological insights and current clinical ap- plications[J]. Circulation, 2001,103 (4) : 604-616.
  • 3SchoenhagenP,DeFrancoA,ENissenS.eta1.IVUSmadeeasy[M].北京:人民军医出版社,2009.
  • 4Vapnik V. The nature of statistical learning theory [M]. New York: Springer Verlag, 1995.
  • 5Qing Yan, Hongmei Yan, Fei Han, et al. SVM- based decision support system for clinic aided tra- cheal intubation predication with multiple features [J]. Expert Systems with Applications, 2009, 36 (3):6588-6592.
  • 6Kai Song, Chang Yuliang. Research and design of image feature recognition classifier based on SVM [C]//2009 Second International Conference on Intel- ligent Computation Technology and Automation. Changsha, Hunan : ICICTA, 2009 : 666-669.
  • 7Wang Anna, Zhao Yue, Hou Yuntao, et al. A novel construction of SVM compound kernel function [C]//2010 International Conference on Logistics Systems and Intelligent Management. Harbin: I- CLSIM, 2010 : 1462-1465.
  • 8Angulo C, Ruiz F J, Gonzalez L, et al. A multi- classification by using tri-class SVM I-J]. Netural Processing Letters, 2006,23 (1) : 89-101.
  • 9Ding Sheng, Li Shunxin. PSO parameters optimiza- tion based support vector machines for hyperspectral classification [C]//The 1st International Conference on Information Science and Engineering. [S. 1.]: ICISE, 2009 : 4066-4069.
  • 10史峰,王小川,郁磊,等.Matlab30个神经网络案例分析[M].北京:北京航空航天大学出版社,2010.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部