期刊文献+

多向压缩强变形细化Al-Cu合金晶粒

Grain refinement in Al-Cu alloy processed by multi-axial compression deformation
在线阅读 下载PDF
导出
摘要 利用硬度检测和透射电镜观察研究含θ″析出相的Al-Cu合金在不同加工温度下多向压缩(MAC)变形后的组织。结果表明:温度大于60℃的加工能显著提高合金的加工性能;经60℃和70℃加工获得的亚晶组织稳定;而经100℃加工过程形成的细小亚晶出现合并长大现象。MAC加工15道次获得的组织分布极其不均匀,这种不均匀性与MAC变形方式密切相关;当加工道次提高到35次时,细晶组织基本分布均匀。对比分析表明试样经60℃MAC加工35道次后的组织状态最为理想。 Al-Cu alloy containing θ'precipitated phase was processed by multi-axial compression (MAC) deformation at various temperatures. The organization evolution was investigated by transmission electron microscopy and vickers hardness tester. The results show that the processing properties of the alloy can be significantly improved with processing temperature rising to 60 ℃. The subgrains obtained during processing at 60 and 70 ℃ are stable, and grow up as the temperature rising to 100 ℃. The uneven distribution of the microstructures of Al-Cu alloy processed by MAC with 15 passes is associated with the deformation pattern of MAC. This can be resolved through the increase of steps to 35 passes. Comparing microstructures of the different processing states, which shows that the microstructures processed during 60 ℃ with 35 passes is optimal.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2013年第10期2800-2807,共8页 The Chinese Journal of Nonferrous Metals
基金 湖南省科技攻关资助项目(2010K1001032-11)
关键词 AL-CU合金 多向压缩变形 亚晶 剪切带 Al-Cu alloy multi-axial compression deformation subgrain shear band
  • 相关文献

参考文献15

  • 1WANG Q J, DU Z Z, LUO L, WANG W. Fatigue properties of ultra-fine grain Cu-Cr alloy processed by equal-channel angular pressing[J]. Alloys and Compounds, 2012, 526: 39-44.
  • 2LEE T, KOYAMA M, TSUZAKI K, LEE Y H, LEE C S. Tensile deformation behavior of Fe-Mn-C TWIP steel with ultrafine elongated grain structure[J]. Materials Letters, 2012, 75: 169-171.
  • 3LANGDON T G. The characteristics of grain refinement in materials processed by severe plastic deformation[J]. Rev Adv Mater Sci, 2006, 13: 6-14.
  • 4CIZEK J, PROCHAZKA I, SMOLA B, STULIKOVA I, KUZEL R, MATEJ Z, CHERKASKA V, ISLAMGALIEV R K, KULYASOVA O. Microstructure and thermal stability of ultra fine grained Mg-based alloys prepared by high-pressure torsion[J]. Materials Science and Engineering, 2007, 462: 121-126.
  • 5PAUL H, BAUDIN T, KUDLACZ K, MORAWIEC A. Recrystallization in ultra-fine grain structures of AA3104 alloy processed by ECAP and HPT[J]. Materials Science Forum, 2012, 715/716: 346-353.
  • 6PADAP A K, CHAUDHARI G P, NATH S K. Ultrafine-grained HSLA steel processed using MAF: Dry sliding wear and corrosion behavior[J]. Materials Science Forum, 2012, 710: 276-281.
  • 7CHERUKURI B, SRINIVASAN R. Properties of AA6061 processed by multi-axial compression/forging (MAC/F)[J]. Materials and Manufacturing Processes, 2006, 21(5): 519-525.
  • 8VALIVE R Z, LANGDON T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science, 2006, 51: 881-981.
  • 9KUNDU A, KAPOOR R, TEWARI R. Severe plastic deformation of copper using multiple compression in a channel die[J]. Scripta Materialia, 2008, 58: 235-238,.
  • 10LIU Zhi-yi, CHEN Xu. The dissolution behavior of phase in A1-Cu binary alloy during equal channel angular pressing and multi-axial compression[J]. Materials Science and Engineering A, 2010, 527: 4300-4305.

二级参考文献19

  • 1许晓嫦,刘志义,党朋,谭曼玲.室温强塑性变形下回溶和再析出的机理研究[J].材料科学与工艺,2005,13(2):178-181. 被引量:11
  • 2西泽泰二.微观组织热力学[M].郝士明译.北京:化学工业出版社,2006.
  • 3CHERUKURI B, SRINIVASAN R. Properties of AA6061 processed by multi-axial compressions/forging (MAC/F)[J]. Materials and Manufacturing Processes, 2006, 21 (5/6): 512- 518.
  • 4FURUKAWA M, HORITA Z, ZHILYAEV A E LANGDON T G. Developing ultrafine-grained microstructures through the use of severe plastical deformation[J]. Mater Sci Forum, 2003, 426/432(3): 2631-2636.
  • 5GAO N, STARINK M J, FURUKAWA M, HORITA Z. Evolution of microstructure and precipitation in heat-treatable aluminium alloys during ECA pressing and subsequent heat treatment[J]. Mater Sci Forum, 2006, 503/504: 275-280.
  • 6VALIEV R Z, LANGDON T G. Principles of equal-channel angular pressing as a processing tool for grain refinement[J]. Progress in Materials Science, 2006, 51:881-981.
  • 7MAO J, KANG S B, PARK J O. Grain refinement, thermal stability and tensile properties of 2024 aluminum alloy after equal-channel angular pressing[J]. Journal of Materials Processing Technology, 2005, 159:314-320.
  • 8GUBICZA J, SCHILLER I, CHINH N Q, ILLY J, HORITA Z, LANGDON T G. The effect of severe plastic deformation on precipitation in supersaturated Al-Zn-Mg alloys[J]. Mater Sci EngA, 2007, 460/461:77 -85.
  • 9XU X C, LIU Z Y, LI Y T, DANG P, ZENG S M. Evolution of precipitates of AI-Cu alloy during equal-channel angular pressing at room temperature[J]. Trans Nonferrous Met Society China, 2008, 18(5): 1047-1052.
  • 10MURAYAMA M, HORITA Z, HONO K. Microstructure of two-phase Al-1.7at% Cu Alloy deformed by equal-channel angular pressing[J]. Acta Mater, 2001, 49(1): 21-29.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部