期刊文献+

基于蜂拥控制的移动传感器网络目标跟踪算法 被引量:29

Target tracking algorithm of mobile sensor networks based on flocking control
原文传递
导出
摘要 针对移动传感器网络中的目标跟踪问题,以及现有控制策略在保持网络拓扑结构连通性和降低能量消耗方面存在的不足,提出一种基于蜂拥控制的移动传感器网络目标跟踪算法.首先,利用网络中部分节点检测目标,并使用卡尔曼一致性滤波算法估计目标的状态,在获得比较精确的估计状态的同时降低能量消耗;然后,在蜂拥控制下传感器网络始终保持拓扑结构连通性和目标对网络可见,同时避免节点之间发生碰撞.仿真结果验证了所提出算法的有效性. In the mobile sensor networks(MSN), the existing target tracking control strategies have shortcomings in preserving topology connectivity and decreasing power consumption. Therefore, a target tracking algorithm based on the flocking-based mobility control algorithm is proposed. Firstly, the target is assumed to be observed by a small fraction of mobile sensors in the networks, which takes important role on reducing power consumption. Then, the connectivity- preserving and collision-avoiding flocking algorithm enables all mobile sensors to track the target utilizing the states of target which are estimated by the small percentage of mobile sensors using Kalman-consensus filtering. Finally, simulation results show the effectiveness of the proposed control scheme.
出处 《控制与决策》 EI CSCD 北大核心 2013年第11期1637-1642,1649,共7页 Control and Decision
基金 国家自然科学基金项目(61174021 61104155 61203034) 安徽省高等学校省级自然科学研究项目(KJ2013B019)
关键词 移动传感器网络 蜂拥控制 卡尔曼一致性滤波 目标跟踪 mobile sensor networks flocking control Kalman-consensus filtering target tracking
  • 相关文献

参考文献10

  • 1Akyildiz I E Su W L, Sankarasubramaniam Y, et al. A survey on sensor networks[J]. IEEE Communications Magazine, 2002, 40(8): 102-114.
  • 2王林,王楠,朱华勇,沈林成.一种面向多无人机协同感知的分布式融合估计方法[J].控制与决策,2010,25(6):814-820. 被引量:14
  • 3杨文,侍洪波,汪小帆.卡尔曼一致滤波算法综述[J].控制与决策,2011,26(4):481-488. 被引量:30
  • 4Spanos D E Saber R O, Murray M R. Approximate distri- buted Kalman filtering in sensor networks with quantifiable performance[C]. Proc of the 4th Int Symposium on Information Processing in Sensor Networks. Los Angeles: IEEE Press', 2005: 133-139.
  • 5Saber R O. Distributed Kalman filtering algorithms for sensor networks[C]. Proc of the 46th IEEE Conf on Decision and Control. New Orleans: IEEE Press, 2007: 5492-5498.
  • 6Saber R O, Jalalkamali E Coupled distributed estimation and control for mobile sensor networks[J]. IEEE Trans onAutomatic Control, 2012, 57(10): 2609-2614.
  • 7Stankovib S S, Stankovib M S, Stipanovib D M. Consensus based overlapping decentralized estimation with missing observations and communications faults[J]. Automatica, 2009, 45(6): 1397-1406.
  • 8Yu W W, Chen G R, Wang Z D, et al. Distributed consensus filtering in sensor networks[J]. IEEE Trans on Systems, Man and Cybernetics, Part B: Cynernetics, 2009, 39(6): 1568-1577.
  • 9Su H S, Chen G R, Wang X F, et al. Adaptive second- order consensus of networked mobile agents with nonlinear dynamics[J]. Automatica, 2011, 47(2): 368-375.
  • 10Zavlanos M M, Tanner H G. Hybrid control for connectivity preserving flocking[J]. IEEE Trans on Automatic Control, 2009, 54(12): 2869-2875.

二级参考文献52

  • 1Office of the secretary of defense. Unmanned systems roadmap 2007-2032[R]. Washington: DoD of USA, 2007.
  • 2Campbell M E, Wheeler M. Cooperative tracking using vision measurements on seascan UAVs[J]. IEEE Trans on Control Systems Technology, 2007, 15(4): 613-627.
  • 3Liggins M E, Chong C Y, Kadar I. Distributed fusion architectures and algorithms for target tracking[J]. Proc of the IEEE, 1997, 85(1): 95-107.
  • 4Vercauteren T, Wang X. Decentralized sigma-point information filters for target tracking in collaborative sensor networks[J]. IEEE Trans on Signal Processing, 2005, 53(8): 2997-3009.
  • 5Olfati-Saber R, Sandell N E Distributed tracking in sensor networks with limited sensor range[C]. Proc of the 2008 American Control Conf. Seattle, 2008: 3157-3162.
  • 6Lee D J. Nonlinear estimation and multiple sensor fusion using unscented information filtering[J]. IEEE Signal Processing Letters, 2008, 15(12): 861-864.
  • 7Ryan A, Durrant-Whyte H F, Hedrick J K. Informationtheoretic sensor motion control for distribution estimation[C]. Proc of IMECE 2007. Seattle, 2007: 1-10.
  • 8Mutambara A G O. Decentralized estimation and control for multisensor systems[M]. Boca RatonL: CRC, 1998.
  • 9Ridley M, Nettleton E, Goktogan A, et al. Decentralised ground target tracking with heterogeneous sensing nodes on multiple UAVs[C]. Information Processing in Senser Networks. Berlin: Springer, 2003: 545-565.
  • 10Hartikainen J, Sarka S. Optimal filtering with Kalman filters and smoothers- A manual for matlab toolbox EKF/UKF [R]. Espoo: Helsinki University of Technology, 2008.

共引文献42

同被引文献177

  • 1戴健,许菲,陈琪锋.多无人机协同搜索区域划分与路径规划[J].航空学报,2020(S01):149-156. 被引量:35
  • 2郭晓行,李金宝,张德升,韩蒙.无线传感器网络中一种基于虚拟坐标的路由选择策略[J].计算机研究与发展,2010,47(S2):209-213. 被引量:1
  • 3刘鹏,郭汝艳.国家体育场雨水收集量确定方法[J].给水排水,2006,32(10):82-89. 被引量:15
  • 4王方伟,张运凯,丁振国,马建峰.无线自组网的拓扑控制策略研究进展[J].计算机科学,2007,34(10):70-73. 被引量:13
  • 5LIN P, JIA Y. Distributed rotating formation control of multi-Agent systems[ J]. Systems and Control Letters, 2010, 59(10) : 587 - 595.
  • 6WANG M, SU H, ZHAO M. Flocking of multiple autonomous A- gents with preserved network connectivity and heterogeneous nonlin- ear dynamics[ J]. Neurocomputing, 2013, 115 (9) : 169 - 177.
  • 7REYNOLDS C. Flocks, herds, and schools: a distributed behavior- al model[ J]. Computer Graphics, 1987,21 (4) : 25 - 34.
  • 8OLFATI-SABER R. Flocking for multi-Agent dynamic systems: AI- gorithms and theory[ ]]. IEEE Transactions on Automatic Control, 2006,51(3) : 401 -420.
  • 9LU X, AUSTIN F, CHEN S. Flocking in multi-Agent systems with active virtual leader and time-varying delays coupling[ J]. Communi- cations in Nonlinear Science and Numerical Simulation, 2011, 16 (2) : 1014 - 1026.
  • 10WANG X, LI X, LU J. Control and flocking of networked systems via pinning[ J]. IEEE Circuits and Systems Magazine, 2010, 10 (3): 83-91.

引证文献29

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部